1887

Abstract

In the last few years a growing body of experimental evidence has indicated that the interaction of human immunodeficiency virus type 1 (HIV-1) surface glycoprotein (gpl20) with the membrane of CD4 cells may deliver negative signals, eventually leading to programmed cell death (apoptosis) of either mature CD4lymphocytes or CD34 haematopoietic progenitor cells, in the absence of cell infection with HIV-1. However, information on the possible activation of the classical signal transduction pathway through gpl20 engagement of cell surface CD4 is contradictory. Heat shock proteins (hsp) or ‘ stress ’ proteins’ are involved in protecting cells from the deleterious effects of heat and other stresses and perform various cell roles. In mammalian cells there is evidence that hsp70 is involved in the transport of proteins to lysosomes, mitochondria and the nucleus. The results obtained in our study demonstrate that early (3 h) after the exposure of permissive CD4 cells to HIV- 1 (or to purified recombinant gpl20) a peak of increased synthesis and nuclear translocation of a 70K hsp (and possibly other proteins) is observed. These data indicate that gpl20 possesses the capacity to trigger a cascade of events through a transmembrane signalling activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-1-193
1994-01-01
2022-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/1/JV0750010193.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-1-193&mimeType=html&fmt=ahah

References

  1. Ameisen J. C., Capron A. 1991; Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunology Today 12:102–105
    [Google Scholar]
  2. Bagasra O., Hauptman S. P., Lischner H. W., Sachs M., Pomerantz R. J. 1992; Detection of human immunodeficiency virus type 1 provirus in mononuclear cells by in situ polymerase chain reaction. New England Journal of Medicine 326:1385–1391
    [Google Scholar]
  3. Banda N. K., Bernier J., Kurahara D. K., Kurrle R., Haigwood N., Sekaly R. P., Finkel T. H. 1992; Crosslinking CD4 by human immunodeficiency virus gpl20 primes T cells for activation-induced apoptosis. Journal of Experimental Medicine 176:1099–1106
    [Google Scholar]
  4. Brenneman D. E., Westbrook G. L., Fitzgerald S. P., Ennist D. L., Elkins K. L., Ruef M. R., Pert C. B. 1988; Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature; London: 335639–642
    [Google Scholar]
  5. Brinchmann J. E., Albert J., Vartdal F. 1991; Few infected CD4+ T cells but a high proportion of replication-competent pro virus copies in asymptomatic human immunodeficiency virus type 1 infection. Journal of Virology 65:2019–2023
    [Google Scholar]
  6. Capobianchi M. R., Ankel H., Ameglio F., Paganelli R., Pizzoli P. M., Dianzani F. 1992; Recombinant glycoprotein 120 of human immunodeficiency virus is a potent interferon inducer. Aids Research and Human Retroviruses 8:575–579
    [Google Scholar]
  7. Capron D. J., Ward R. H. 1991; The CD4-gp120 interaction and AIDS pathogenesis. Annual Review of Immunology 9:649–678
    [Google Scholar]
  8. Cohen D. I., Tani Y., Tian H., Boone E., Samelson L. E., Lane H. C. 1992; Participation of tyrosine phosphorylation in the cytopathic effect of human immunodeficiency virus-1. Science 256:542–545
    [Google Scholar]
  9. di Cesare S., Poccia F., Mastino A., Colizzi V. 1992; Surface expressed heat shock protein by stressed or HIV infected lymphoid cells represents the target for antibody dependent cellular cytotoxicity. Immunology 76:341–343
    [Google Scholar]
  10. Dreyer E. B., Kaiser P. K., Offermann J. T., Lipton S. A. 1990; HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248:364–367
    [Google Scholar]
  11. Fauci A. S. 1988; The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239:617–622
    [Google Scholar]
  12. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonucjease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  13. Folks T., Benn S., Rabson A., Theodore T., Hougan M. D., Martin M., Lightfoote M., Sell K. 1985; Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proceedings of the National Academy of Sciences, U.S.A 82:4539–4543
    [Google Scholar]
  14. Furlini G., Re M. C., Musiani M., Zerbini M. L., La Placa M. 1990; Enhancement of HIV-1 marker detection in cell cultures treated with mild heat-shock. Microbiologica 13:21–26
    [Google Scholar]
  15. Geelen J. L. M. C., Minnaar R. P., Boom R., van der Noordaa J., Goudsmit J. 1988; Heat-shock induction of the human immunodeficiency virus long terminal repeat. Journal of General Virology 69:2913–2917
    [Google Scholar]
  16. Groux H., Torpier G., Monte D., Mouton Y., Capron A., Ameisen J. C. 1992; Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. Journal of Experimental Medicine 175:331–340
    [Google Scholar]
  17. Horak I. D., Popovic M., Horak E. M., Lucas P. J., Gress R. E., June C. H., Bolen J. B. 1990; No T-cell tyrosine protein kinase signalling or calcium mobilization after CD4 association with HIV- 1 or HIV-1 gpl20. Nature; London: 348557–560
    [Google Scholar]
  18. Hunt C., Morimoto R. I. 1985; Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proceedings of the National Academy of Sciences, U.S.A 82:6455–6459
    [Google Scholar]
  19. Kaufmann R., Laroche D., Buchner K., Hucho F., Rudd C., Lindschau C., Ludwig P., Hoer A., Oberdisse E., Kopp J., Korner I. J., Repke H. 1992; The HIV-1 surface protein gpl20 has no effect on transmembrane signal transduction in T cells. Journal of Acquired Immune Deficiency Syndromes 5:760–770
    [Google Scholar]
  20. Koga Y., Sasaki M., Yoshida H., Wigzell H., Kimura G., Nomoto K. 1990; Cytopathic effect determined by the amount of CD4 molecules in human cell lines expressing envelope protein of HIV. Journal of Immunology 144:94–102
    [Google Scholar]
  21. Kornfeld H., Cruikshank W. W., Pyle S. W., Berman J. S., Center D. M. 1988; Lymphocyte activation by HIV-1 envelope glycoprotein. Nature; London: 335445–448
    [Google Scholar]
  22. Lalli E., Gibellini D., Santi S., Facchini A. 1992; In situ hybridization in suspension and flow cytometry as a tool for the study of gene expression. Analytical Biochemistry 207:298–303
    [Google Scholar]
  23. Laurent-Crawford A. G., Krust B., Muller S., Riviere Y., Rey-Cuille M. A., Bechet J. M., Montagnier L., Hovanessian A. G. 1991; The cytopathic effect of HIV is associated with apoptosis. Virology 185:829–839
    [Google Scholar]
  24. Lee M. H., Sano K., Morales F. E., Imagawa D. T. 1988; Comparable sensitivities for detection of human immunodeficiency virus by sensitive reverse transcriptase and antigen capture enzyme-linked immunosorbent assays. Journal of Clinical Microbiology 26:371–374
    [Google Scholar]
  25. Legrand-Poels S., Vaira D., Pincemail J., van de Vorst A., Piette J. 1990; Activation of human immunodeficiency virus type 1 by oxidative stress. AIDS Research and Human Retroviruses 6:1389–1397
    [Google Scholar]
  26. Linette G. P., Hartzman R. J., Ledbetter J. A., June C. H. 1988; HIV-infected T cells show a selective signalling defect after perturbation of CD3/antigen receptor. Science 241:573–576
    [Google Scholar]
  27. Meyaard L., Otto S. A., Jonker R. R., Mijnster M. J., Keet R. P., Miedema F. 1992; Programmed death of T cells in HIV-1 infection. Science 257:217–219
    [Google Scholar]
  28. Musiani M., Zerbini M., Gibellini D., Gentilomi G., La Placa M., Ferri E., Girotti S. 1991; Chemiluminescent assay for the detection of viral and plasmid DNA using digoxigenin-labelled probes. Analytical Biochemistry 194:394–398
    [Google Scholar]
  29. Pantaleo G., Graziosi C., Fauci A. S. 1993; The immunopathogenesis of human immunodeficiency virus infection. New England Journal of Medicine 328:327–335
    [Google Scholar]
  30. Poccia F., Placido R., Mancino G., Mariani F., Ercoli L., di Cesare S., Colizzi V. 1993; Expression of heat shock proteins in HIV-1 infection. In New Concepts in AIDS Pathogenesis pp. 195–218 Montagnier L., Gougeon M. L. Edited by New York: Marcel Dekker;
    [Google Scholar]
  31. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. 1984; Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and preAIDS. Science 224:497–500
    [Google Scholar]
  32. Re M. C., Furlini G., La Placa M. 1989; Rapid detection of HIV-1 in clinical samples by co-culture with heat-shocked cells. Journal of Virological Methods 26:313–318
    [Google Scholar]
  33. Rosenberg Z. F., Fauci A. S. 1989; The immunopathogenesis of HIV infection. Advances in Immunology 47:377–431
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schnittman S. M., Psallidopoulos M. C., Lane H. C., Thompson L., Baseler M., Massari F., Fox C. H., Salzman N. P., Fauci A. S. 1989; The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 245:305–308
    [Google Scholar]
  36. Shi Y., Thomas J. O. 1992; The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Molecular and Cellular Biology 12:2186–2192
    [Google Scholar]
  37. Simmonds P., Balfe P., Peutherer J. F., Ludlam C. A., Bishop J. O., Brown A. J. 1990; Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. Journal of Virology 64:864–872
    [Google Scholar]
  38. Stanley S. K., Bressler P. B., Poli G., Fauci A. S. 1990; Heat shock induction of HIV production from chronically infected promonocytic and T cell lines. Journal of Immunology 145:1120–1126
    [Google Scholar]
  39. Stevenson M., Haggerty S., Lamonica C., Mann A. M., Meier C., Wasiak A. 1990; Cloning and characterization of human immunodeficiency virus type 1 variants diminished in the ability to induce syncytium-independent cytolysis. Journal of Virology 64:3792–3803
    [Google Scholar]
  40. Terai C., Kornbluth R. S., Pauza C. D., Richman D. D., Carson D. A. 1991; Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. Journal of Clinical Investigation 87:1710–1715
    [Google Scholar]
  41. Weinhold K. J., Lyerly H. K., Stanley S. D., Austin A. A., Matthews T. J., Bolognesi D. P. 1989; HIV-1 GP120-mediated immune suppression and lymphocyte destruction in the absence of viral infection. Journal of Immunology 142:3091–3097
    [Google Scholar]
  42. York-Higgins D., Cheng-Mayer C., Bauer D., Levy J. A., Dina D. 1990; Human immunodeficiency virus type 1 cellular host range, replication, and cytopathicity are linked to the envelope region of the viral genome. Journal of Virology 64:4016–4020
    [Google Scholar]
  43. Zauli G., Re M. C., Furlini G., Giovannini M., La Placa M. 1992a; Human immunodeficiency virus type 1 envelope glycoprotein gp120-mediated killing of human haematopoietic progenitors (CD34+ cells). Journal of General Virology 73:417–421
    [Google Scholar]
  44. Zauli G., Re M. C., Visani G., Furlini G., La Placa M. 1992b; Inhibitory effect of HIV-1 envelope glycoproteins gp120 and gp160 on the in vitro growth of enriched (CD34+) hematopoietic progenitor cells. Archives of Virology 122:271–280
    [Google Scholar]
  45. Zauli G., Re M. C., Davis B., Sen L., Visani G., Gugliotta L., Furlini G., La Placa M. 1992c; Impaired in vitro growth of purified (CD34+) hematopoietic progenitors in human immunodeficiency virus-1 seropositive thrombocytopenic individuals. Blood 79:2680–2687
    [Google Scholar]
  46. Zauli G., Re M. C., Visani G., Furlini G., Mazza P., Vignoli M., La Placa M. 1992d; Evidence for a human immunodeficiency virus type-1-mediated suppression of uninfected hematopoietic (CD34+) cells in AIDS patients. Journal of Infectious Diseases 166:710–716
    [Google Scholar]
  47. Zauli G., Davis B., Re M. C., Visani G., Furlini G., La Placa M. 1992e; Tat protein stimulates production of transforming growth factor-β 1 by marrow macrophages: a potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression. Blood 80:3036–3043
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-1-193
Loading
/content/journal/jgv/10.1099/0022-1317-75-1-193
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error