1887

Abstract

The gene encoding the envelope glycoprotein of Omsk haemorrhagic fever (OHF) virus was cloned and sequenced. A freeze-dried preparation of infected suckling mouse brain suspension was used as the source material for viral RNA. The derived cDNA was amplified using the polymerase chain reaction and the cloned DNA sequenced by dideoxynucleotide sequencing. Alignment of the OHF virus sequence with those of other known tick-borne flaviviruses showed that they shared -glycosylation sites, cysteine residues, the fusion peptide and a hexapeptide (EHLPTA) that identifies tick-borne flaviviruses. OHF virus was distinguishable from the other viruses but shared closest amino acid identity (93·0%) with the tick-borne encephalitis viruses. A sequence of three amino acids (AQN; amino acids 232 to 234), which was previously shown to be specific for the tick-borne encephalitis viruses, was altered to MVG in OHF virus. This is predicted to have a higher hydrophobicity than the AQN sequence and may therfore have significant implications for the phenotypic characteristics of OHF virus. The results demonstrate close phylogenetic relationships between these viruses but also show their distinct evolutionary development. Sequence changes within the envelope glycoprotein of OHF virus have been identified that may be responsible for the distinct tropism of this flavivirus. These results support and enlarge upon previous data obtained from serological analysis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-2-287
1993-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/2/JV0740020287.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-2-287&mimeType=html&fmt=ahah

References

  1. Bell J. R., Kinney R. M., Trent D. W., Lenches E. M., DalGarno L., Strauss J. M. 1985; N-terminal amino acid sequences of structural proteins of three flaviviruses. Virology 143:224–229
    [Google Scholar]
  2. Biedrzycka A., Cauchi M. R., Bartholomeusz A., Gorman J. J., Wright P. J. 1987; Characterization of protease cleavage sites involved in the formation of the envelope glycoprotein and three non-structural proteins of dengue virus type 2, New Guinea c strain. Journal of General Virology 68:1317–1326
    [Google Scholar]
  3. Boege U., Heinz P. X., Wengler G., Kunz C. 1983; Amino acid composition and amino terminal sequences of the structural proteins of a flavivirus, European tick-borne encephalitis virus. Virology 126:651–657
    [Google Scholar]
  4. Calisher C. H., Karabatsos N., Dalrymple J. M., Shope R. E., Porterfield J.S., Westaway E. G., Brandt W. E. 1989; Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. Journal of General Virology 70:37–43
    [Google Scholar]
  5. Castle E., Nowak T., Leidner U., Wengler G., Wengler G. 1985; Sequence analysis of the viral core protein and the membrane-associated proteins VI NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145:227–236
    [Google Scholar]
  6. Cecilia D., Gould E. A. 1991; Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181:70–77
    [Google Scholar]
  7. Clarke, D H. 1964; Further studies on antigenic relationships among the viruses of the group B tick-borne complex. Bulletin of the World Health Organization 31:45–65
    [Google Scholar]
  8. Dalgarno L., Trent D. W., Strauss J. H., Rice C. M. 1986; Partial nucleotide sequence of the Murray Valley encephalitis virus genome’ Comparison of the encoded polypeptides with yellow fever virus structural and non-structural proteins. Journal of Molecular Biology 187:309–323
    [Google Scholar]
  9. Della-Porta A. J., Westaway E. G. 1978; A multi-hit model for the neutralization of animal viruses. Journal of General Virology 38:1–19
    [Google Scholar]
  10. Deubel V., Kinney R. M., Trent D. W. 1986; Nucleotide sequence and deduced amino acid sequence ofthe structural proteins of dengue type 2 virus, Jamaican genotype. Virology 155:365–377
    [Google Scholar]
  11. Deubel V., Kinney R. M., Trent D. W. 1988; Nucleotide sequence and deduced amino acid sequence of the non-structural proteins of dengue type 2 virus, Jamaica genotype: comparative analysis of the full length genome. Virology 165:234–244
    [Google Scholar]
  12. Gould E. A., Chanas A. C., Buckley A., Clegg J. C. S. 1983; Monoclonal immunoglobulin M antibody to Japanese encephalitis virus that can react with a nuclear antigen in mammalian cells. Infection and Immunity 41:774–779
    [Google Scholar]
  13. Gould E. A., Buckley A., Cammack N., Barrett A. D. T., Clegg J. C. S., Ishak R., Varma M. G. R. 1985; Examination of the immunological relationships between flaviviruses using yellow fever virus monoclonal antibodies. Journal of General Virology 66:1369–1382
    [Google Scholar]
  14. Gould E. A., Buckley A., Barrett A. D. T., Cammack N. 1986; Neutralizing (54K) and non-neutralizing (54K and 48K) monoclonal antibodies against structural and non-structural yellow fever virus proteins confer immunity in mice. Journal of General Virology 67:591–595
    [Google Scholar]
  15. Guirakhoo F., Heinz F. X., Mandl C. W., Holzmann H., Kunz C., Gres íková M. 1991; The relationship between the flaviviruses Skalica and Langat as revealed by monoclonaj antibodies, peptide mapping and RNA sequence analysis. Journal of General Virology 72:333–338
    [Google Scholar]
  16. Hahn C. S., Dalrymple J. M., Strauss J. H., Rice C. M. 1987; Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proceedings of the National Academy of Sciences, U.S.A 842019–2023
    [Google Scholar]
  17. Higgins D. G., Sharp P. M. 1988; A package for performing multiple sequence alignments on a microcomputer. Gene 13:237–244
    [Google Scholar]
  18. Holzmann H. J., Heinz F. X., Mandl C. W., Guirakhoo F., Kunz C. 1990; A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. Journal of Virology 64:5156–5159
    [Google Scholar]
  19. Lobigs M., Usha R., Nestorowicz A., Marshall I. D., Weir R. C., Dalgarno L. 1990; Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176:587–595
    [Google Scholar]
  20. Lvov D. K. 1988; Omsk haemorrhagic fever. In The Arboviruses: Epidemiology and Ecology pp 205–216 Edited by Monath T. Boca Raton: CRC Press;
    [Google Scholar]
  21. McAda P. C., Mason P. W., Schmaljohn C. S., Dalrymple J. M., Mason T. L., Fournier M. J. 1987; Partial nucleotide sequence of the Japanese encephalitis virus genome. Virology 158:348–360
    [Google Scholar]
  22. Mandl C. W., Heinz F. X., Kunz C. 1988; Sequence of the structural proteins of tick-borne encephalitis virus (Western subtype) and comparative analysis with other flaviviruses. Virology 166:197–205
    [Google Scholar]
  23. Mandl C. W., Heinz F. X., Stockl E., Kunz C. 1989; Genome sequence of tick-borne encephalitis virus (Western subtype) and comparative analysis of non-structural proteins with other flaviviruses. Virology 173:291–301
    [Google Scholar]
  24. Mandl C. W., Connors L. I., Wallner G., Holzmann H., Kunz C., Heinz F. 1991; Sequence of the genes encoding the structural proteins of the low virulence tick-borne flaviviruses Langat TP21 and Yelantsev. Virology 185:891–895
    [Google Scholar]
  25. Mathews J. H., Roehrig J. T. 1984; Elucidation of the topography and determination of the protective epitopes on the E glycoprotein of Saint Louis encephalitis virus by passive transfer with monoclonal antibodies. Journal of lmniunology 132:1533–1537
    [Google Scholar]
  26. Pletnev A. G., Yamshchikov V. F., Blinov V. M. 1990; Nucleotide sequence of the genome and complete amino acid sequence of the polyprotein of tick-borne encephalitis virus. Virology 174:250–263
    [Google Scholar]
  27. Porterfield J. S. 1980; Antigenic characteristics and classification of Togaviridae. In The Togaviruses pp 13–46 Edited by Schlesinger R. W. New York: Academic Press;
    [Google Scholar]
  28. Qureshi A. A., Trent D. W. 1973; Group B arboviras structural and non-structura] antigens. III. Serological specificity of solubilised intracellular viral proteins. Infection and Immunity 8:993–999
    [Google Scholar]
  29. Rice C. M., Lenchbs E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  30. Rice C. M., Strauss E. G., Strauss J. H. 1986; Structure of the flavivirus genome. In The Togaviridae and Flaviridae pp 279–326 Edited by Schlesinger S., Schlesinger M. J. New York: Plenum Press;
    [Google Scholar]
  31. Safronov P. F., Netcsov S. V., Mikryukova T. P., Blinov E. G., Osipova N. N., Kiseleva N., Sandakhchiev L. S. 1991; Tick borne encephalitis virus strain 205: nucleotide sequence of genes and complete amino acid sequence of viral proteins. Molecular Genetics 4:23–29
    [Google Scholar]
  32. Sambrook J., Maniatis T., Fritsch E. F. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 745463–5467
    [Google Scholar]
  34. Shiu S. Y. W., Ayres M. D., Gould E. A. 1991; Genomic sequence of the structural proteins of louping ill virus: comparative analysis with tick-borne encephalitis virus. Virology 180:411–415
    [Google Scholar]
  35. Shiu S. Y. W., Jiang W. R., Porterfield J. S., Gould E. A. 1992; Envelope protein sequences of dengue virus isolates TH-36 and TH-Sman, and identification of a type-specific genetic marker for dengue and tick-borne flaviviruses. Journal of General Virology 73:207–212
    [Google Scholar]
  36. Speight G., Coia G., Parker M.D., Westaway E. G. 1988; Gene mapping and positive identification of non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. Journal of General Virology 69:23–34
    [Google Scholar]
  37. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarashi A. 1987; Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510
    [Google Scholar]
  38. Trent D. W., Kinney R. M., Johnson B. J. B., Vordnam A. V., Grant J. A., Deubel V., Rice C. M., Hahn C. 1987; Partial nucleotide sequence of St Louis encephalitis virus RNA: structural proteins, NS1 NS2a and NS2b. Virology 156:293–304
    [Google Scholar]
  39. Westaway E. G., Brinton M. A., Gaidamovich S. Yu., Horzinek M. C., Igarashi A., Kaariainen L., Lvov D. K., Porterfield J. S., Russell P. K., Trent D. W. 1985; Flaviviridae. Inter-virology 24:183–192
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-2-287
Loading
/content/journal/jgv/10.1099/0022-1317-74-2-287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error