1887

Abstract

Herpes simplex virus type 1 encodes its own DNA polymerase (Pol), the product of the UL30 gene, and a polymerase accessory subunit, the product of the UL42 gene, both of which are required for viral DNA replication. Pol and the UL42 protein associate to form a heterodimeric complex (Pol/UL42) which is more active and has a higher processivity than the Pol catalytic subunit alone. The Pol/UL42 complex has been reconstituted by mixing together highly purified Pol and UL42 subunits obtained from recombinant baculovirus-infected cells. We have used polymerase activity on poly(dA):oligo(dT), a template that the Pol subunit utilizes with low efficiency, to measure the formation of the Pol/UL42 complex. Our data indicate that the association constant for the Pol/UL42 complex is 1 × 10 . Proteolytic digestions of UL42 were performed to determine whether structural domains of UL42 could be disclosed by differential amino acid accessibilities. The ability of these protease-resistant domains to form a functional complex with Pol was determined by measuring their ability to stimulate Pol activity on poly(dA):oligo(dT). We have found that trypsin digestion of UL42 in the presence of DNA generates protease-resistant fragments of 28K and 8K which co-elute from a MonoQ column and are able to stimulate Pol activity on poly(dA):oligo(dT). Complex formation of the 28K and 8K tryptic fragments with Pol was also shown by their co-immunoprecipitation with antibody to Pol. It was determined that the 28K fragment of UL42 comprised amino acids 1 to 245 or 1 to 254 of UL42, whereas the 8K fragment started at amino acid 255. Thus, controlled proteolysis of UL42 revealed two closely contiguous structural domains that retained the ability to complex with Pol and stimulate Pol activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-10-2181
1993-10-01
2023-02-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/10/JV0740102181.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-10-2181&mimeType=html&fmt=ahah

References

  1. Chang L. M. S. 1973; Low molecular weight deoxyribonucleic acid polymerase from calf thymus chromatin. Journal of Biological Chemistry 248:6893–6992
    [Google Scholar]
  2. Chartrand P., Crumpacker C. S., Schaffer P. A., Wilkie N. M. 1980; Physical and genetic analysis of the herpes simplex virus DNA polymerase locus. Virology 103:311–326
    [Google Scholar]
  3. Crute J. J., Lehman I. R. 1989; Herpes simplex virus DNA polymerase. Identification of an intrinsic 5′-3′ exonuclease with ribonuclease H activity. Journal of Biological Chemistry 264:1926b–19270
    [Google Scholar]
  4. Digard P., Coen D. M. 1990; A novel functional domain of an alike DNA polymerase. The binding site on the herpes simplex virus polymerase for the viral UL42 protein. Journal of Biological Chemistry 265:17393–17396
    [Google Scholar]
  5. Digard P., Bebrin W. R., Weisshart K., Coen D. M. 1993a; The extreme C-terminus of herpes simplex virus DNA polymerase is crucial for functional interaction with processivity factor UL42 and for viral replication. Journal of Virology 67:398–106
    [Google Scholar]
  6. Digard P., Chow C. S., Pirrit L., Coen D. M. 1993b; Functional analysis of the herpes simplex virus UL42 protein. Journal of Virology 67:1159–1168
    [Google Scholar]
  7. Fay P. J., Johanson K. O., McHenry C. S., Bambara R. A. 1982; Size classes of products synthesized processively by two subassemblies of Escherichia coli DNA polymerase III holoenzyme. Journal of Biological Chemistry 257:5692–5699
    [Google Scholar]
  8. Gallo M. L., Jackwood D. H., Murphy M., Marsden H. S., Parris D. S. 1988; Purification of the herpes simplex virus type 1 65-kilodalton DNA binding protein: properties of the protein and evidence of its association with the virus-encoded DNA polymerase. Journal of Virology 62:2874–2883
    [Google Scholar]
  9. Gallo M. L., Dorsky D. I., Crumpacker C. S., Parris D. S. 1989; The essential 65-kilodalton DNA-binding protein of herpes simplex virus stimulates the virus-encoded DNA polymerase. Journal of Virology 63:5023–5029
    [Google Scholar]
  10. Gao M., DiTusa S. F., Cordingley M. G. 1993; The C-terminal third of UL42, a HSV-1 DNA replication protein, is dispensable for viral growth. Virology (in press)
    [Google Scholar]
  11. Gill S. C., von Hippel P. H. 1989; Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry 182:319–326
    [Google Scholar]
  12. Gottlieb J., Marcy A. I., Coen D. M., Challberg M. D. 1990; The herpes simplex virus type 1 UL42 gene product: a subunit of DNA polymerase that functions to increase processivity. Journal of Virology 64:5976–5987
    [Google Scholar]
  13. Hart G. J., Boehme R. E. 1992; The effect of the UL42 protein on the DNA polymerase activity of the catalytic subunit of the DNA polymerase encoded by herpes simplex virus type 1. FEBS Letters 305:97–100
    [Google Scholar]
  14. Hernandez T. R., Lehman I. R. 1990; Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. Journal of Biological Chemistry 265:11227–11232
    [Google Scholar]
  15. McGeoch D. J., Dalrymple M. A., Dolan A., McNab D., Perry L. J., Taylor P., Challberg M. D. 1988; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  16. Marchetti M. E., Smith C. E., Schaffer P. A. 1988; A temperature-sensitive mutation in a herpes simplex virus type 1 gene required for viral DNA synthesis maps to coordinates 0.609 through 0.614 in UL. Journal of Virology 62:715–721
    [Google Scholar]
  17. Owsianka A. M., Hart G., Murphy M., Gottlieb J., Boehme R., Challberg M., Marsden H. S. 1993; Inhibition of herpes simplex virus type 1 DNA polymerase activity by peptides from the UL42 accessory protein is largely nonspecific. Journal of Virology 67:258–264
    [Google Scholar]
  18. Parris D. S., Cross A., Haarr L., Orr A., Frame M. C., Murphy M., McGeoch D. J., Marsden H. S. 1988; Identification of the gene encoding the 65-kilodalton DNA binding protein of herpes simplex virus type 1. Journal of Virology 62:818–825
    [Google Scholar]
  19. Prelich G., Tan C. -K., Kostura M., Mathews M. B., So A. G., Downey K. D., Stillman B. 1987; Functional identity of proliferating cell nuclear antigen and a DNA polymerase-d auxiliary protein. Nature, London 326:517–520
    [Google Scholar]
  20. Purifoy D. J. M., Lewis R. B., Powell K. L. 1977; Identification of the herpes simplex virus DNA polymerase gene. Nature, London 269:621–623
    [Google Scholar]
  21. Schaffer P. A., Aron G. M., Biswal N., Benyesh-Melnick M. 1973; Temperature-sensitive mutants of herpes simplex virus type 1: isolation, complementation and partial characterization. Virology 52:57–71
    [Google Scholar]
  22. Stow N. 1993; Sequences at the C-terminus of the herpes simplex virus type 1 UL30 protein are dispensable for DNA polymerase activity but not for viral origin-dependent DNA replication. Nucleic Acids Research 21:87–92
    [Google Scholar]
  23. Summers M. D., Smith G. E. 1987 A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures Texas Agriculture Experiment Station bulletin 1555;
    [Google Scholar]
  24. Tabor S., Huber H. E., Richardson C. C. 1987; Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. Journal of Biological Chemistry 262:16212–16223
    [Google Scholar]
  25. Tenney D. J., Micheletti P. A., Stevens J. T., Hamatake R. K., Matthews J. T., Sanchez A. R., Hurlburt W. W., Bifano M., Cordingley M. G. 1993a; Mutations in the C terminus of herpes simplex virus type 1 DNA polymerase can affect binding and stimulation by its accessory protein UL42 without affecting basal polymerase activity. Journal of Virology 67:543–547
    [Google Scholar]
  26. Tenney D. J., Hurlburt W. W., Bifano M., Stevens J. T., Micheletti P. A., Hamatake R. K., Cordingley M. G. 1993b; Deletions of the carboxy terminus of herpes simplex virus type 1 UL42 define a conserved amino-terminal functional domain. Journal of Virology 67:1959–1966
    [Google Scholar]
  27. Webb N. R., Summers M. D. 1990; Expression of proteins using recombinant baculoviruses. Technique 2:173–188
    [Google Scholar]
  28. Weller S. K., Aschman D. P., Sacks W. R., Coen D. M., Schaffer P. A. 1983; Genetic analysis of temperature-sensitive mutants of HSV-1; the combined use of complementation and physical mapping for cistron assignment. Virology 130:290–305
    [Google Scholar]
  29. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-10-2181
Loading
/content/journal/jgv/10.1099/0022-1317-74-10-2181
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error