1887

Abstract

A cell clone, L-2, which produces non-infectious doughnut-shaped human immunodeficiency virus type 1 (HIV-1) particles, was permissive for HIV-1 superinfection, which resulted in the production of infectious particles. The superinfection showed slow kinetics compared with primary HIV-1 infection of M10 cells, the parent of the L-2 cells using several CD4-related reagents showed that the CD4 molecule was an essential component of the receptor for superinfection. Strong inhibitory effects were obtained using CD4 peptides such as CD4(68–130), which includes a portion homologous to the immunoglobulin third complementarity-determining region (CDR3), as well as recombinant soluble CD4. In contrast, a CD4(45-60) peptide, which includes most of the CDR2-related region, was not effective, although the Leu-3a monoclonal antibody (MAb), which recognizes a site near the CDR2-related region, did slightly, but significantly, delay the superinfection kinetics. Comparative flow cytometry of L-2 and M10 cells revealed that the cell surface of L-2 cells despite expressing HIV-1 env protein, reacted slightly with OKT4 or anti-CD4(68-130) MAb, but not with Leu-3a or OKT4A MAb. In contrast, no reaction was detected with any of these anti-CD4 MAbs on the surface of another HIV-1 superinfection-resistant cell clone, MOLT-#8IIIB-14, which expresses HIV-1 env proteins but does not produce infectious HIV-1 particles. These results strongly suggest that expression of the CD4 major receptor site for primary HIV-1 infection is preferentially decreased on the surface of L-2 cells, but that the OKT4 epitope and the nearby region corresponding to immunoglobulin CDR3 remain exposed on the cell surface. Consequently, the CD4 CDR3-related region could play a major role as the receptor for the superinfection reported here.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-7-1761
1992-07-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/7/JV0730071761.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-7-1761&mimeType=html&fmt=ahah

References

  1. Arthos J., Deen K. C., Chaikin M. A., Fornwald J. A., Sathe G., Sattentau Q. J., Clapham P. R., Weiss R. A., McDougal J. S., Pietropaolo C., Axel R., Truneh A., Maddon P. J., Sweet P. W. 1989; Identification of the residues in human CD4 critical for the binding of HIV. Cell 57:469–481
    [Google Scholar]
  2. Barré-Sinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vesinet-Brun F., Rozioux C., Rozenbaum W., Montagnier L. 1983; Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871
    [Google Scholar]
  3. Berger E. A., Lifson J. D., Eiden L. E. 1991; Stimulation of glycoprotein gp120 dissociation from the envelope glycoprotein complex of human immunodeficiency virus type 1 by soluble CD4 and CD4 peptide derivatives: implications for the role of the complementarity determining region-3 like region in membrane fusion. Proceedings of the National Academy of Sciences, U.S.A. 88:8082–8086
    [Google Scholar]
  4. Berger E. A., Fuerst T. R., Moss B. 1988; A soluble recombinant polypeptide comprising the amino-terminal half of the extracellular region of the CD4 molecule contains an active binding site for human immunodeficiency virus. Proceedings of the National Academy of Sciences, U.S.A. 85:2357–2361
    [Google Scholar]
  5. Besanski N. J., Butera S. T., Sinha S., Folks T. M. 1991; Unintegrated human immunodeficiency virus type 1 DNA in chronically infected cell lines is not correlated with surface CD4 expression. Journal of Virology 65:2695–2698
    [Google Scholar]
  6. Buonocore M., Rose J. K. 1990; Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum. Nature, London 345:625–628
    [Google Scholar]
  7. Cao Y., Friedman-Kien A. E., Huang Y., Li X. L., Mirabile M., Moudgil T., Zucker-Franklin D., Ho D. D. 1990; CD4-independent, productive human immunodeficiency virus type 1 infection of hepatoma cell lines in vitro. Journal of Virology 64:2553–2559
    [Google Scholar]
  8. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  9. Clark S. J., Jefferies W. A., Barclay A. N., Gagnon J., Williams A. F. 1987; Peptide and nucleotide sequences of rat CD4 (W3/25) antigen: evidence for derivation from a structure with four immunoglobulin-related domains. Proceedings of the National Academy of Sciences, U.S.A. 84:1649–1653
    [Google Scholar]
  10. Clayton L. K., Hussey R. E., Steinbrich R., Ramachandran H., Husain Y., Reinherz E. L. 1988; Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature, Landon 335:363–366
    [Google Scholar]
  11. Crise B., Buonocore L., Rose J. K. 1990; CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. Journal of Virology 64:5585–5593
    [Google Scholar]
  12. Dalgleish A. G., Beverly P. C. L., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature, Landon 312:763–766
    [Google Scholar]
  13. Garcia J. V., Miller A. D. 1991; Serine phosphorylationindependent down-regulation of cell-surface CD4 by nef. Nature, London 350:508–511
    [Google Scholar]
  14. Goto T., Ikuta K., Zhang J. J., Morita C., Sano K., Komatsu M., Fujita H., Kato S., Nakai M. 1990; The budding of defective human immunodeficiency virus type 1 (HIV-1) particles from cell clones persistently infected with HIV-1. Archives of Virology 111:87–101
    [Google Scholar]
  15. Harouse J. M., Kunsch C., Hartle H. T., Laughlin M. A., Hoxie J. A., Wigdahl B., Gonzalez-Scarano F. 1989; CD4-independent infection of human neural cells by human immunodeficiency virus type 1. Journal of Virology 63:2527–2533
    [Google Scholar]
  16. Hart A. R., Cloyd M. W. 1990; Interference patterns of human immunodeficiency viruses HIV-1 and HIV-2. Virology 177:1–10
    [Google Scholar]
  17. Hayashi Y., Ikuta K., Fuhi N., Ezawa K., Kato S. 1989; Inhibition of HIV-1 replication and syncytium formation by synthetic CD4 peptides. Archives of Virology 105:129–135
    [Google Scholar]
  18. Hoxie J. A., Alpers J. D., Rackowski J. L., Huebner K., Haggarty B. S., Cedarbaum A. J., Reed J. C. 1986; Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV. Science 234:1123–1127
    [Google Scholar]
  19. Ikuta K., Imai H., Ueda S., Suehiro S., Yamamoto N., Kato S. 1987; Amplification of human immunodeficiency virus production from a virus-producing cell line in culture at high cell density. Japanese Journal of Cancer Research (Gann) 78:643–647
    [Google Scholar]
  20. Ikuta K., Morita C., Miyake S., Ito T., Okabayashi M., Sano K., Nakai M., Hirai K., Kato S. 1989; Expression of human immunodeficiency virus type 1 (HIV-1) gag antigens on the surface of a cell line persistently infected with HIV-1 that highly expresses HIV-1 antigens. Virology 170:408–417
    [Google Scholar]
  21. Imai H., Maotani-Imai K., Shin Y.-S., Ikuta K., Suehiro S., Kurimura T., Kato S., Hirai K. 1991; A defective proviral DNA with a 2.6 kb deletion of human immunodeficiency virus type 1 (HIV-1) in a persistently HIV-1 infected cell clone. Virus Genes 5:81–88
    [Google Scholar]
  22. Ishizaki R., Vogt P. K. 1966; Immunological relationships among envelope antigens of avian tumor viruses. Virology 30:375–387
    [Google Scholar]
  23. Kawamura I., Koga Y., Oh-hori N., Onodera K., Kimura G., Nomoto K. 1989; Depletion of surface CD4 molecule by the envelope protein of human immunodeficiency virus expressed in a human CD4+ monocytoid cell line. Journal of Virology 63:3748–3754
    [Google Scholar]
  24. Kikukawa R., Koyanagi Y., Harada S., Kobayashi N., Hatan-aka M., Yamamoto N. 1986; Differential susceptibility to the acquired immunodeficiency syndrome retrovirus in cloned cells of human leukemic T-cell line Molt-4. Journal of Virology ST1159–1162
    [Google Scholar]
  25. Klatzmann D., Champagne E., Chamaret E., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. 1984; T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, London 312:767–768
    [Google Scholar]
  26. Koga Y., Sasaki M., Nakamura K., Kimura G., Nomoto K. 1990; Intracellular distribution of the envelope glycoprotein of human immunodeficiency virus and its role in the production of cytopathic effect in CD4+ and CD4 human cell lines. Journal of Virology 64:4661–4671
    [Google Scholar]
  27. Landau N. R., Warton M., Littman D. R. 1988; The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature, London 334:159–162
    [Google Scholar]
  28. Lifson J. D., Feinberg M. B., Reyes G. R., Rabin L., Banapour B., Chakrabarti S., Moss B., Wong-Staal F., Steinmer K. S., Engleman E. G. 1986; Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature, London 323:725–728
    [Google Scholar]
  29. Lifson J. D., Hwang K. M., Nara P. L., Fraser B., Padgett M., Dunlop N. M., Eiden L. E. 1988; Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathicity. Science 241:712–716
    [Google Scholar]
  30. Littman D. R., Maddon P. J., Axel R. 1988; Corrected CD4 sequence. Cell 55:541
    [Google Scholar]
  31. McDougal J. S., Kennedy M. S., Sligh J. M., Cort S. F., Mawle A., Nicholson J. K. A. 1986; Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science 231:382–385
    [Google Scholar]
  32. Maddon P. J., Littman D. R., Godfrey M., Maddon D. E., Chess L., Axel R. 1985; The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family. Cell 42:93–104
    [Google Scholar]
  33. Maddon P. J., Milineauz S. M., Maddon D. E., Zimmerman K. A., Godfrey M., Alt F. W., Chess L., Axel R. 1987; Structure and expression of the human and mouse T4 genes. Proceedings of the National Academy of Sciences, U.S.A. 84:9155–9159
    [Google Scholar]
  34. Matsushita S., Robert-Guroff M., Rusche J., Koito A., Hattori T., Hoshino H., Javaherian K., Takatsuki K., Putney S. 1988; Characterization of a human immunodeficiency virus neutralizing monoclonal antibody and mapping of the neutralizing epitope. Journal of Virology 62:2107–2114
    [Google Scholar]
  35. Minowada J., Ohnuma T., Moore G. E. 1972; Rosette forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. Journal of National Cancer Institute 49:891–895
    [Google Scholar]
  36. Miyoshi L., Taguchi H., Kubonishi L., Yoshimoto S., Ohtsuki Y., Shiraishi Y., Akagi T. 1982; Type C virus producing cell lines derived from adult T cell leukemia. In Adult T Cell Leukemia and Related Diseases (Gann Monograph on Cancer Research) no. 28 pp 219–228 Edited by Hanaoka M., Takatsuki K., Shimoyama M. Tokyo: Japan Scientific Societies Press; New York: Plenum Press;
    [Google Scholar]
  37. Mizukami T., Fuerst T. R., Berger E. A., Moss B. 1988; Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proceedings of the National Academy of Sciences, U.S.A. 85:9273–9277
    [Google Scholar]
  38. Moore J. P., McKeating J. A., Weiss R. A., Sattentau Q. J. 1990; Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250:1139–1142
    [Google Scholar]
  39. Moore J. P., McKeating J. A., Huang Y., Ashkenazi Y. A., Ho D. D. 1992; Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. Journal of Virology 66:235–243
    [Google Scholar]
  40. Morikawa Y., Overton H. A., Moore J. P., Wilkinson A. J., Brady R. L., Lewis S. J., Jones I. M. 1990; Expression of HIV-1 gp120 and human soluble CD4 by recombinant baculoviruses and their interaction in vitro. AIDS Research and Human Retroviruses 6:765–773
    [Google Scholar]
  41. Nara P. L., Hwang K. M., Rausch D. M., Lifson J. D., Eiden L. E. 1989; CD4 antigen-based antireceptor peptides inhibit infectivity of human immunodeficiency virus in vitro at multiple stages of the viral life cycle. Proceedings of the National Academy of Sciences, U.S.A. 86:7139–7143
    [Google Scholar]
  42. Ogawa K., Shibata R., Kiyosasu T., Higuchi I., Kishida Y., Ishimoto A., Adachi A. 1989; Mutational analysis of the human immunodeficiency virus vpr open reading frame. Journal of Virology 63:4110–4114
    [Google Scholar]
  43. Ohki K., Kimura T., Ohmura K., Kato S., Ikuta K. 1990; Blocking of HIV-1 infection, but not HIV-1-induced syncytium formation, by a CD4 peptide derivative partly corresponding to an immunoglobulin CDR3. AIDS 4:1160–1161
    [Google Scholar]
  44. Ohki K., Kimura T., Ohmura K., Morikawa Y., Jones I. M., Azuma I., Ikuta K. 1992; Monoclonal antibodies to a CD4 peptide derivative which includes the region corresponding to an immunoglobulin CDR3: evidence of the involvement of pre-CDR3-related region in HIV-1 and host cell interaction. Molecular Immunology (in press)
    [Google Scholar]
  45. Pauza C. D., Galindo J. E., Richman D. D. 1990; Reinfection results in accumulation of unintegrated viral DNA in cytopathic and persistent human immunodeficiency virus type 1 infection of CEM cells. Journal of Experimental Medicine 172:1035–1042
    [Google Scholar]
  46. Peterson A., Seed B. 1988; Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54:65–72
    [Google Scholar]
  47. Popovic M., Read-Connole E., Gallo R. C. 1984a; T4 positive human neoplastic cell line susceptible to and permissive for HTLV-III. Lancet ii:1472–1473
    [Google Scholar]
  48. Popovic M., Sarngadharan M. G., Reed E., Gallo R. C. 1984b; Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and preAIDS. Science 224:497–500
    [Google Scholar]
  49. Rey F., Donker G., Hirsch I., Chermann J.-C. 1991; Productive infection of CD4+ cells by selected HIV strains is not inhibited by anti-CD4 monoclonal antibodies. Virology 181:165–171
    [Google Scholar]
  50. Robinson H. L., Zinkus D. M. 1990; Accumulation of human immunodeficiency virus type 1 DNA in T cells: results of multiple infection events. Journal of Virology 64:4836–4841
    [Google Scholar]
  51. Saitoh A., Tanaka N., Nakata A., Ikuta K., Shinagawa H. 1992; A unique monoclonal antibody that recognizes mature pl7 of HIV-1 but not its precursor. Microbiology and Immunology 36:105–111
    [Google Scholar]
  52. Salmon P., Olivier R., Riviere Y., Brisson E., Gluckman J.-C., Kieny M.-P., Montagnier L., Klatzmann D. 1988; Loss of CD4 membrane expression and CD4 mRNA during acute human immunodeficiency virus replication. Journal of Experimental Medicine 168:1953–1969
    [Google Scholar]
  53. Sattentau Q. J., Dalgleish A. G., Weiss R. A., Beverley P. C. L. 1986; Epitopes of the CD4 antigen and HIV infection. Science 234:1120–1123
    [Google Scholar]
  54. Sattentau Q. J., Arthos J., Deen K., Hanna N., Healey D., Beverley P. C. L., Sweet R., Truneh A. 1989; Structural analysis of the human immunodeficiency virus-binding domain of CD4. Journal of Experimental Medicine 170:1319–1334
    [Google Scholar]
  55. Sodroski J., Goh W. C., Rosen C., Campbell K., Haseltine W. A. 1986; Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature, London 322:470–474
    [Google Scholar]
  56. Stevenson M., Zhang X., Volsky D. J. 1987; Downregulation of cell surface molecules during noncytopathic infection of T cells with human immunodeficiency virus. Journal of Virology 61:3741–3748
    [Google Scholar]
  57. Stevenson M., Meier C., Mann A. M., Chapman N., Wasiak A. 1988; Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell 53:483–496
    [Google Scholar]
  58. Weiss R. A. 1969; Interference and neutralization studies with bryan strain Rous sarcoma virus synthesized in the absence of helper virus. Journal of General Virology 5:529–539
    [Google Scholar]
  59. Yunoki M., Maotani-Imai K., Kusuda H., Motoyama M., Miyake S., Imai H., Shin Y. S., Kato S., Sano K., Morita C., Nakai M., Hirai K., Ikuta K. 1991; Production of infectious particles from defective human immunodeficiency virus type 1 (HIV-l)-producing cell clones by superinfection with infectious HIV-1. Archives of Virology 116143–158
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-7-1761
Loading
/content/journal/jgv/10.1099/0022-1317-73-7-1761
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error