1887

Abstract

The complete RNA genome of turnip mosaic potyvirus (TuMV) was amplified by seven consecutive reverse transcriptase-polymerase chain reactions and cloned into pUC9. The viral RNA is 9830 nucleotides long and contains a single open reading frame (ORF) of 9489 bases encoding a large polyprotein of 3863 amino acids with a calculated of 358000. The non-coding region (NCR) preceding the ORF is 129 nucleotides long and has a high AU content (70%). Its predicted secondary structure is characterized by a hairpin loop with a free energy loss of -69.9 kJ/mol. The termination codon is followed by an AU-rich NCR of 209 bases, excluding the poly(A) tail. Seven potential nuclear inclusion a proteinase (NIa-Pro) recognition heptapeptides are found in the polyprotein. Their sequences agree with consensus potyviral NIa-Pro cleavage sequences except for that at the 6K-VPg site, which is characterized by a glutamic acid residue preceding the hydrolysed peptide bond. The TuMV proteins are similar to their corresponding potyviral proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-11-2785
1992-11-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/11/JV0730112785.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-11-2785&mimeType=html&fmt=ahah

References

  1. Allison R., Johnston R. E., Dougherty W. G. 1986; The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single protein. Virology 154:9–20
    [Google Scholar]
  2. Altmann M., Blum S., Wilson T. M. A., Trachsel H. 1990; The 5′-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene 91:127–129
    [Google Scholar]
  3. Calzone F. J., Britten R. J., Davidson E. H. 1987; Mapping of gene transcripts by nuclease protection assays and cDNA primer extension. MethodsinEnzymology 152:611–632
    [Google Scholar]
  4. Carrington J. C., Dougherty W. G. 1987; Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. Virology 61:2540–2548
    [Google Scholar]
  5. Carrington J. C., Freed D. D. 1990; Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. JournalofVirology 64:1590–1597
    [Google Scholar]
  6. Carrington J. C., Herndon K. L. 1992; Characterization of the potyviral HC-Pro autoproteolytic cleavage site. Virology 187:308–315
    [Google Scholar]
  7. Carrington J. C., Cary S. M., Parks T. D., Dougherty W. G. 1989; A second protease encoded by a plant potyviral genome. EMBOJournal 8:365–370
    [Google Scholar]
  8. Chang C. -A., Hiebert E., Purcifull D. E. 1988; Analysis of in vitro translation of bean yellow mosaic virus RNA: inhibition of proteolytic processing by an antiserum to the 49K nuclear inclusion protein. JournalofGeneralVirology 69:1117–1122
    [Google Scholar]
  9. Domier L. L., Franklin K. M., Shahabuddin M., Hellmann G. M., Overmeyer J. H., Hiremath S. T., Siaw M. F. E., Lomonossoff G. P., Shaw J. G., Rhoads R. E. 1986; The nucleotide sequence of tobacco vein mottling virus RNA. NucleicAcidsResearch 14:5417–5430
    [Google Scholar]
  10. Dougherty W. G., Carrington J. C. 1988; Expression and function of potyviral gene products. AnnualReviewofPhytopathology 26:123–142
    [Google Scholar]
  11. Dougherty W. G., Parks T. D. 1991; Post-translational processing of the tobacco etch virus 49-kDa small inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology 183:449–456
    [Google Scholar]
  12. Dougherty W. G., Carrington J. C., Cary S. M., Parks T. D. 1988; Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBOJournal 7:1281–1287
    [Google Scholar]
  13. Dougherty W. G., Cary S. M., Parks T. D. 1989; Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171:356–364
    [Google Scholar]
  14. Frohman M. A., Dush M. K., Martin G. R. 1988; Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences, U. S. A. 85:8998–9002
    [Google Scholar]
  15. García J. A., Riechmann J. L., Laín S. 1989; Proteolytic activity of the plum pox potyvirus NIa-like protein in Escherichiacoli . Virology 170:362–369
    [Google Scholar]
  16. Ghabrial S. A., Smith H. A., Parks T. D., Dougherty W. G. 1990; Molecular genetic analyses of the soybean mosaic virus NIa proteinase. JournalofGeneralVirology 71:1921–1927
    [Google Scholar]
  17. Hellmann G. M., Shaw J. G., Rhoads R. E. 1988; In vitro analysis of tobacco vein mottling virus NIa cistron: evidence for a virus-encoded protease. Virology 163:554–562
    [Google Scholar]
  18. Jobling S. A., Gehrke L. 1987; Enhanced translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence. Nature, London 325:622–625
    [Google Scholar]
  19. Johansen E., Rasmussen O. F., Heide M., Borkhardt B. 1991; The complete nucleotide sequence of pea seed-borne mosaic virus RNA. JournalofGeneralVirology 72:2625–2632
    [Google Scholar]
  20. Kong L. -J., Fang R. -X., Chen Z. -H., Mang K. -Q. 1990; Molecular cloning and nucleotide sequence of coat protein gene of turnip mosaic virus. NucleicAcidsResearch 18:5555
    [Google Scholar]
  21. Laín S., Riechmann J. L., García J. A. 1989; The complete nucleotide sequence of plum pox potyvirus RNA. VirusResearch 13:157–172
    [Google Scholar]
  22. Laín S., Riechmann J. L., García J. A. 1990; RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. NucleicAcidsResearch 18:7003–7006
    [Google Scholar]
  23. Laín S., Martin M. T., Riechmann J. L., García J. A. 1991; Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicase-iike protein. JournalofVirology 63:1–6
    [Google Scholar]
  24. Laliberté J. -F., Nicolas O., Chatel H., Lazure C., Morosoli R. 1992 Release of a 22-kDa protein derived from the amino-terminal domain of the 49-kDa NIa of turnip mosaic potyvirus in Escherichiacoli. Virology (in press)
  25. Lutcke H. A., Chow K. C., Micker F. S., Moss K. A., Kern H. F., Scheele G. A. 1987; Selection of AUG initiation codons dilfers in plants and animals. EMBOJournal 6:43–48
    [Google Scholar]
  26. Maiss E., Timpe U., Brisske A., Jelkmann W., Casper R., Himmler G., Mattanovich D., Katinger H. W. D. 1989; The complete nucleotide sequence of plum pox virus RNA. JournalofGeneralVirology 70:513–524
    [Google Scholar]
  27. Mavankal G., Rhoads R. E. 1991; In vitro cleavage at or near the N-terminus of the helper component protein in the tobacco vein mottling virus polyprotein. Virology 185:721–731
    [Google Scholar]
  28. Miller R. H., Purcell R. H. 1990; Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proceedings of the National Academy of Sciences, U. S. A. 87:2057–2061
    [Google Scholar]
  29. Murphy J. F., Rhoads R. E., Hunt A. G., Shaw J. G. 1990; The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology 178:285–288
    [Google Scholar]
  30. Nicolas O., Laliberté J.-F. 1991; The use of PCR for the cloning of large cDNA fragments of turnip mosaic potyvirus. JournalofVirologicalMethods 32:57–66
    [Google Scholar]
  31. Parks T. D., Smith H. A., Dougherty W. G. 1992; Cleavage profiles of tobacco etch virus (TEV)-derived substrates mediated by precursor and processed forms of the TEV NIa proteinase. JournalofGeneralVirology 73:149–155
    [Google Scholar]
  32. Riechmann J. L., Laín S., García J. A. 1991; Identification of the initiation codon of plum pox potyvirus genomic RNA. Virology 185:544–552
    [Google Scholar]
  33. Riechmann J. L., Laín S., García J. A. 1992; Highlights and prospects of potyvirus molecular biology. JournalofGeneralVirology 73:1–16
    [Google Scholar]
  34. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., Casse-Delbart F. 1989; Nucleotide sequence of potato virus Y (N strain) genomic RNA. JournalofGeneralVirology 70:935–947
    [Google Scholar]
  35. Rodriguez-Cerezo E., Shaw J. G. 1991; Two newly-detected non-structural viral proteins in potyvirus-infected cells. Virology 185:572–579
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn.. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U. S. A. 74:5463–5467
    [Google Scholar]
  38. Shattuck V. I., Brolley B., Stobbs L. W., Lougheed E. C. 1989; The effect of turnip mosaic virus infection on the mineral content and storability of field-grown rutabaga. CommunicationsinSoilScienceandPlantAnalysis 20:581–595
    [Google Scholar]
  39. Shukla D. D., Ward C. W. 1989; Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Advances in Virus Research 36:273–314
    [Google Scholar]
  40. Tremblay M. -F., Nicolas O., Sinha R. C., Lazure C., Laliberté J. -F. 1990; Sequence of the 3′-terminal region of turnip mosaic virus RNA and the capsid protein gene. Journal of General Virology 71:2769–2772
    [Google Scholar]
  41. Turpen T. 1989; Molecular cloning of a potato virus Y genome: nucleotide sequence homology in non-coding regions of potyviruses. JournalofGeneralVirology 70:1951–1960
    [Google Scholar]
  42. Verchot J., Koonin E. V., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185:527–535
    [Google Scholar]
  43. Ward C. W., Shukla D. D. 1991; Taxonomy of potyviruses: current problems and some solutions. Intervirology 32:269–296
    [Google Scholar]
  44. Zuker M., Stiegler P. 1981; Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9:133–148
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-11-2785
Loading
/content/journal/jgv/10.1099/0022-1317-73-11-2785
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error