1887

Abstract

The Daudi strain of Epstein—Barr virus (EBV) possesses a genomic deletion, relative to the B95-8 EBV prototype, that removes the entire Epstein—Barr virus nuclear antigen 2 (EBNA2) open reading frame (ORF) and the sequences encoding the carboxy terminus of EBNA5. Immunoblot analysis carried out in this study indicates that two species of EBNA5 (31K and 37K) are expressed in Daudi cells. Nucleotide sequence analysis of Daudi cDNA clones has confirmed that, as a consequence of the genomic deletion, exons usually appearing further downstream in EBNA messages (exons U or HF) are spliced directly onto the truncated EBNA5 ORF. Furthermore, the use of alternative splicing suggests that the two EBNA5 species expressed in Daudi cells possess different carboxy termini.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-10-2715
1992-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/10/JV0730102715.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-10-2715&mimeType=html&fmt=ahah

References

  1. Allan G., Rowe D. T. 1989; Size and stability of the Epstein-Barr virus major internal repeat (IR-1) in Burkitt’s lymphoma and lymphoblastoid cell lines. Virology 173:489–498
    [Google Scholar]
  2. Allan G. J., Inman G. J., Parker B. D., Rowe D. T., Farrell P. J. 1992; Cell growth effects of Epstein-Barr virus leader protein. Journal of General Virology 73:1547–1551
    [Google Scholar]
  3. Dillner J., Kallin B., Alexander H., Ernberg I., Uno M., Ono Y., Klein G., Lerner R. A. 1986; An Epstein-Barr virus (EBV)-determined nuclear antigen (EBNA5) partly encoded by the transformation-associated Bam WYH region of EBV DNA: preferential expression in lymphoid cell lines. Proceedings of the National Academy of Sciences, U.S.A. 83:6641–6645
    [Google Scholar]
  4. Dyson N., Howley P. M., Münger K., Harlow E. 1989; The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937
    [Google Scholar]
  5. Favaloro J., Treisman R., Kamen R. 1980; Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods in Enzymology 65:718–749
    [Google Scholar]
  6. Finke J., Rowe M., Kallin B., Ernberg I., Rosen A., Dillner J., Klein G. 1987; Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA5) detect multiple protein species in Burkitt’s lymphoma and lymphoblastoid cell lines. Journal of Virology 61:3870–3878
    [Google Scholar]
  7. Gregory C. D., Rowe M., Rickinson A. B. 1990; Different Epstein-Barr virus-B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. Journal of General Virology 71:1481–1495
    [Google Scholar]
  8. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature, London 340:393–397
    [Google Scholar]
  9. Jeang K.-T., Hayward S. D. 1983; Organisation of the Epstein-Barr virus DNA molecule III. Location of the P3HR-1 deletion junction and characterization of the Notl repeat units that form part of a template for an abundant TPA induced RNA transcript. Journal of Virology 48:135–148
    [Google Scholar]
  10. Jenson H. B., Farrell P. J., Miller G. 1987; Sequences of the Epstein-Barr virus (EBV) large internal repeat form the centre of a 16-kilobase pair palindrome of EBV (P3HR-1) heterogeneous DNA. Journal of Virology 61:1495–1506
    [Google Scholar]
  11. Jiang W.-Q., Szekely L., Wendel-Hansen V., Ringertz N., Klein G., Rosen A. 1991; Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA-5. Experimental Cell Research 197:314–318
    [Google Scholar]
  12. Jones M. D., Foster L., Sheedy T., Griffin B. E. 1984; The EB virus genome in Daudi Burkitt’s lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR-1) of the virus. EMBO Journal 3:813–821
    [Google Scholar]
  13. Kawasaki E. S. 1990; Amplification of RNA. In PCR Protocols: A Guide to Methods and Applications pp. 21–27 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego: Academic Press;
    [Google Scholar]
  14. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E. 1991; The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. Journal of Virology 65:6826–6837
    [Google Scholar]
  15. Rogers R. P., Woisetschlaeger M., Speck S. H. 1990; Alternative splicing dictates translational start in Epstein-Barr virus transcripts. EMBO Journal 9:2273–2277
    [Google Scholar]
  16. Rooney C., Howe J. G., Speck S. H., Miller G. 1988; Influence of Burkitt’s lymphoma and primary B cells on latent gene expression by a non-immortalizing strain of Epstein-Barr virus. Journal of Virology 63:1531–1539
    [Google Scholar]
  17. Rowe D. T., Farrell P. J., Miller G. 1987; Novel nuclear antigen recognized by human sera in lymphocytes latently infected by Epstein-Barr virus. Virology 156:153–162
    [Google Scholar]
  18. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Sample J., Hummel M., Braun D., Birkenbach M., Kieff E. 1986; Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable translational initiation site. Proceedings of the National Academy of Sciences, U.S.A. 83:5096–5100
    [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A. 74:5463–5467
    [Google Scholar]
  21. Speck S. H., Strominger J. L. 1989; Transcription of Epstein-Barr virus in latently infected, growth transformed lymph-cytes. Advances in Viral Oncology 8:133–150
    [Google Scholar]
  22. Speck S. H., Pfitzner A., Strominger J. L. 1986; An Epstein-Barr virus transcript from a latently infected, growth transformed B-cell line encodes a highly repetitive polypeptide. Proceedings of the National Academy of Sciences, U.S.A. 83:9298–9302
    [Google Scholar]
  23. Wang F., Petti L., Braun D., Seung S., Kieff E. 1987; A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth transformed lymphocytes. Journal of Virology 61:945–954
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-10-2715
Loading
/content/journal/jgv/10.1099/0022-1317-73-10-2715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error