1887

Abstract

We have analysed the site of bovine papillomavirus type 1 (BPV-1) DNA integration in clones originating from a transformed primary mouse fibroblast cell line established by transfection of linear BPV-1 DNA. Viral DNA was integrated at a single site in the host genome with an intact early region and an almost complete long control region. Sequence analysis showed that the BPV-1 DNA was integrated at the dIII site (the enzyme used to linearize the BPV-1 DNA for transfection) with short deletions at both ends. These deletions correspond to a 534 bp segment spanning the 3′ end of the L1 open reading frame and the replication enhancer element in the BPV-1 genome. The cellular sequences 5′ to the viral integration site exhibited 85 to 97% identity to several sequences belonging to the mouse L1 family of long interspersed repetitive sequences. Cellular sequences 3′ to the viral DNA exhibited no significant similarity to any known sequence. The BPV-1 sequences and the cellular flanking sequences were found to be amplified 45- to 50-fold. All the cell clones shared an identical integration site but one of the clones had an additional population of amplified and integrated BPV-1 DNA molecules with an internal deletion of 1136 bp in the late region. The significance of viral DNA integration at a murine long interspersed repetitive sequence containing an amplification-promoting sequence is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-1-201
1992-01-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/1/JV0730010201.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-1-201&mimeType=html&fmt=ahah

References

  1. Alitalo K., Koskinkn P., MäKELä T. P., Saksela K., Sistonen L., Winqvist R. 1987; myc Oncogenes: activation and amplification. Biochimica et biophysica acta 907:1–32
    [Google Scholar]
  2. Allshire R. C., Bostock C. J. 1986; Structure of bovine papillomavirus type 1 DNA in a transformed mouse cell line. Journal of Molecular Biology 188:1–13
    [Google Scholar]
  3. Ann D. K., Smith M. K., Carlson D. M. 1988; Molecular evolution of the mouse proline-rich protein multi-gene family: insertion of a long interspersed repeated DNA element. Journal of Biological Chemistry 263:10887–10893
    [Google Scholar]
  4. Baker C. C. 1990; Bovine papillomavirus type 1 transcription. In Papillomaviruses and Human Cancer pp 91–112 Edited by Pfister H. Boca Raton: CRC Press;
    [Google Scholar]
  5. Breitburd F., Favre M., Zoorob R., Fortin D., Orth G. 1981; Detection and characterisation of viral genomes and search for tumoral antigens in two hamster cell lines derived from tumours induced by bovine papillomavirus type 1. International Journal of Cancer 27:693–702
    [Google Scholar]
  6. Campo M. S. 1985; Bovine papillomavirus DNA: a eukaryotic cloning vector. In DNA Cloning:A Practical Approach vol 2 pp 213–236 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  7. Cannizzaro L. A., Durst M., Mendez M. J., Hecht B. K., Hecht F. 1988; Regional chromosome localization of human papillomavirus integration sites near fragile sites, oncogenes, and cancer chromosome breakpoints. Cancer Genetics and Cytogenetics 33:93–98
    [Google Scholar]
  8. Challberg M. D., Kelly T. J. 1989; Animal virus DNA replication. Annual Review of Biochemistry 58:671–717
    [Google Scholar]
  9. Chen E. Y., Howley P. M., Levinson A. D., Seeburg P. H. 1982; The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature, London 299:529–534
    [Google Scholar]
  10. Choo K.-B., Lee H.-H., Pan C.-C., Wu S.-M., Liew L.-N., Cheung W.-F., Han S.-H. 1988; Sequence duplication and internal deletion in the integrated human papillomavirus type 16 genome cloned from a cervical carcinoma. Journal of Virology 62:1659–1666
    [Google Scholar]
  11. Choo K.-B., Lee H.-H., Liew L.-N., Chong K.-Y., Chou H.-F. 1990; Analysis of the unoccupied site of an integrated human papillomavirus 16 sequence in a cervical carcinoma. Virology 178:621–625
    [Google Scholar]
  12. Dembic Z., Bannwarth W., Taylor B. A., Steinmetz M. 1985; The gene encoding T-cell receptor α-chain maps close to the Np-2 locus on mouse chromosome 14. Nature, London 314:271–273
    [Google Scholar]
  13. DePamphilis M. L. 1988; Transcriptional elements as components of eukaryotic origins of replication. Cell 52:635–638
    [Google Scholar]
  14. DiMaio D., Treisman R. H., Maniatis T. 1982; Bovine papillomavirus vector that propagates as a plasmid in both mouse and bacterial cells. Proceedings of the National Academy of Sciences, U.S.A. 79:4030–4034
    [Google Scholar]
  15. Dürst M., Kleinheinz A., Hotz M., Gissmann L. 1985; The physical state of human papillomavirus type 16 DNA in benign and malignant genital tumours. Journal of General Virology 66:1515–1522
    [Google Scholar]
  16. Dürst M., Schwartz E., Gissmann L. 1988; Integration and persistence of human papillomavirus type 16 DNA in genital tumours. Banbury Reports 21:273–280
    [Google Scholar]
  17. Dvoretzky I., Shober R., Chattopadhyay S. K., Lowy D. R. 1980; A quantitative in vitro focus forming assay for bovine papillomavirus. Virology 103:369–375
    [Google Scholar]
  18. El Awady M. K., Kaplan J. B., O’Brien S. J., Burk R. D. 1987; Molecular analysis of integrated human papillomavirus 16 sequences in the cervical cancer cell line SiHa. Virology 159:389–398
    [Google Scholar]
  19. Frayne E. G., Kellems R. E. 1986; Structural features of the murine dihydrofolate reductase transcription termination region: identification of a conserved DNA sequence element. Nucleic Acids Research 14:4113–4125
    [Google Scholar]
  20. Gissmann L., Dürst M., Oltersdorf T., von Knebel Doeberitz M. 1987; Human papillomavirus and cervical cancer. Cancer Cells 5:275–280
    [Google Scholar]
  21. Grummt F. 1989; Autonomous replication in mouse cells. Cell 56:143–144
    [Google Scholar]
  22. Holst A., Müller F., Zastrow G., Zentgraf H., Schwender S., Dinkl E., Grummt F. 1988; Murine genomic DNA sequences replicating autonomously in mouse L cells. Cell 52:355–365
    [Google Scholar]
  23. Jahn C. J., Hutchison C. A. III, Phillips S. J., Weaver S., Haigwood N. L., Voliva C. F., Edgell M. H. 1980; DNA sequence organisation of the beta-globin complex in the BALB/C mouse. Cell 21:159–168
    [Google Scholar]
  24. Jelinek W. R., Toomey T. P., Leinwand L., Duncan C. H., Biro P. A., Choudary P. V., Weissman S. M., Rubin C. M., Houck C. M., Deininger P. L., Schmid C. W. 1980; Ubiquitous, interspersed repeated sequences in mammalian genomes. Proceedings of the National Academy of Sciences, U.S.A. 77:1398–1402
    [Google Scholar]
  25. Johnson E. M., Jelinek W. R. 1986; Replication of a plasmid bearing a human Alu- family repeat in monkey COS-7 cells. Proceedings of the National Academy of Sciences, U.S.A. 83:4660–4664
    [Google Scholar]
  26. Lai C. J., Nathans D. 1974; Deletion mutants of simian virus 40 generated by enzymatic excision of DNA segments from the viral genome. Journal of Molecular Biology 89:170–193
    [Google Scholar]
  27. Lambert P. F., Baker C. C., Howley P. M. 1988; The genetics of bovine papillomavirus type 1. Annual Review of Genetics 22:235–258
    [Google Scholar]
  28. Law M. F., Lowy D. R., Dvoretzky I., Howley P. M. 1981; Mouse cells transformed by papillomaviruses contain only extra-chromosomal viral DNA sequence. Proceedings of the National Academy of Sciences, U.S.A. 78:2727–2731
    [Google Scholar]
  29. Law M. F., Byrne J. C., Howley P. M. 1983; A stable bovine papillomavirus hybrid plasmid that expresses a dominant selective trait. Molecular and Cellular Biology 3:2110–2115
    [Google Scholar]
  30. Lehn H., Villa L. L., Marziona F., Hilgarth M., Hillemans H.-G., Sauer G. 1988; Physical state and biological activity of human papillomavirus genomes in precancerous lesions of the female genital tract. Journal of General Virology 69:187–196
    [Google Scholar]
  31. Loeb D. D., Padgett R. W., Hardies S. C., Shehee W. R., Comer M. B., Edgell M. H., Hutchison C. A. III 1986; The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Molecular and Cellular Biology 6:168–182
    [Google Scholar]
  32. Lowy D. R., Dvoretzky L, Shober R., Law M. F., Engel L., Howley P. M. 1980; In vitro tumorigenic transformation by a defined subgenomic fragment of bovine papillomavirus DNA. Nature, London 287:72–74
    [Google Scholar]
  33. Lusky M., Botchan M. R. 1984; Characterisation of the bovine papillomavirus plasmid maintenance sequences. Cell 36:391–401
    [Google Scholar]
  34. Lusky M., Botchan M. R. 1986; Transient replication of bovine papillomavirus type 1 plasmids: cis and trans requirements. Proceedings of the National Academy of Sciences, U.S.A. 83:3609–3613
    [Google Scholar]
  35. Mäntyjärvi R., Sarkkinen H., Parkkinen S., Ryhänen A., Karjalainen H., Syrjänen K., Syrjänen S. 1988; Phenotypic transformation of primary mouse fibroblasts by BPV1 DNA. Archives of Virology 100:17–25
    [Google Scholar]
  36. Martin S. L., Voliva C. F., Burton F. H., Edgell M. H., Hutchison C. A. III 1984; A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein. Proceedings of the National Academy of Sciences, U.S.A. 81:2308–2312
    [Google Scholar]
  37. Mitrani-Rosenbaum S., Maroteaux S. L., Mory Y., Revel M., Howley P. M. 1983; Inducible expression of the human interferon gene linked to a bovine papillomavirus vector maintained extrachromosomally in mouse cells. Molecular and Cell Biology 3:233–240
    [Google Scholar]
  38. Sarver N., Byrne J. C., Howley P. M. 1982; Transformation and replication in mouse cells of a bovine papillomavirus-pML2 plasmid vector that can be rescued in bacteria. Proceedings of the National Academy of Sciences, U.S.A. 79:7147–7151
    [Google Scholar]
  39. Schwartz E., Freese W. K., Gissmann L., Mayer W., Roggen-burk B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, London 314:111–114
    [Google Scholar]
  40. Smith K. T., Campo M. S. 1988; ʽHit and run’ transformation of mouse C127 cells by bovine papillomavirus type 4: the viral DN A is required for initiation but not for maintainance of the transformed phenotype. Virology 164:39–47
    [Google Scholar]
  41. Smith K. T., Campo M. S. 1989; Amplification of specific DNA sequences in C127 mouse cells transformed by bovine papillomavirus type 4. Oncogene 4409–113
    [Google Scholar]
  42. Spalholz B. A., Lambert P. F., Yee C. L., Howley P. M. 1987; Bovine papillomavirus transcriptional regulation: localisation of the E2-responsive elements of the long control region. Journal of Virology 61:2128–2137
    [Google Scholar]
  43. Stark G. R., Wahl G. M. 1984; Gene amplification. Annual Review of Biochemistry 53:447–491
    [Google Scholar]
  44. Tanabe O., Akira S., Kamiya T., Wong G., Hirano T., Kishimoto T. 1988; Genomic structure of the murine IL-6 gene. Journal of Immunology 141:3875–3881
    [Google Scholar]
  45. Wagatsuma M., Hashimoto K., Matsukura T. 1990; Analysis of integrated human papillomavirus type 16 DNA in cervical cancers: amplification of viral sequences together with cellular flanking sequences. Journal of Virology 64:813–821
    [Google Scholar]
  46. Wegner M., Schwender S., Dinkl E., Grummt F. 1990; An amplification-promoting sequence from mouse genome DNA: interaction with a transacting factor that also affects gene expression. DNA and Cell Biology 9:311–321
    [Google Scholar]
  47. Wettstein F. O. 1990; State of viral DNA and gene expression in benign vs malignant tumors. In Papillomaviruses and Human Cancer pp 155–179 Edited by Pfister H. Boca Raton: CRC Press;
    [Google Scholar]
  48. Wettstein F. O., Stevens J. G. 1982; Variable-sized free episomes of Shope papillomavirus DNA are present in all non-virus-producing neoplasms and integrated episomes are detected in some. Proceedings of the National Academy of Sciences, U.S.A. 79:790–794
    [Google Scholar]
  49. Yang L., Botchan M. 1990; Replication of bovine papillomavirus type 1 DNA initiates within an E2-responsive enhancer element. Journal of Virology 64:5903–5911
    [Google Scholar]
  50. Zastrow G., Koehler U., Müller F., Klavinius A., Wegner M., Wienberg J., Weidle U. H., Grummt F. 1989; Distinct mouse DNA sequences enable establishment and persistence of plasmid DNA polymers in mouse cell. Nucleic Acids Research 17:1867–1879
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-1-201
Loading
/content/journal/jgv/10.1099/0022-1317-73-1-201
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error