1887

Abstract

The potyvirus group [named after its type member, potato virus Y (PVY)] is the largest of the 34 plant virus groups and families currently recognized (Ward & Shukla, 1991). It contains at least 180 definitive and possible members (or 30% of all known plant viruses) which cause significant losses in agricultural, pasture, horticultural and ornamental crops (Ward & Shukla, 1991). These viruses are unique in the diversity of inclusion bodies that are formed during the infection cycle (see Lesemann, 1988). A feature shared by all potyviruses is the induction of characteristic pinwheel or scroll-shaped inclusion bodies in the cytoplasm of the infected cells (Edwardson, 1974). These cylindrical inclusion (CI) bodies are formed by a virus-encoded protein and can be considered as the most important phenotypic criterion for assigning viruses to the poty-virus group (Milne, 1988; Shukla ., 1989; Ward & Shukla, 1991).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-1-1
1992-01-01
2022-05-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/1/JV0730010001.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-1-1&mimeType=html&fmt=ahah

References

  1. Ahlquist P., French R., Janda M., Loesch-Fries L. S. 1984; Multicomponent RNA plant virus infection derived from cloned viral cDNA. >Proceedings of the National Academy of Sciences, U.S.A 81:7066–7070
    [Google Scholar]
  2. Allison R. F., Sorenson J. C., Kelly M. E., Armstrong F. B., Dougherty W. G. 1985; Sequence determination of the capsid protein gene and flanking regions of tobacco etch virus: evidence for synthesis and processing of a polyprotein in potyvirus genome expression. Proceedings of the National Academy of Sciences, U.S.A 81:3969–3972
    [Google Scholar]
  3. Allison R., Johnston R. E., Dougherty W. G. 1986; The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154:9–20
    [Google Scholar]
  4. Altmann M., Blum S., Wilson T. M. A., Trachsel H. 1990; The 5′-leader sequence of tobacco mosaic virus RNA mediates initiation-factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene 91:127–129
    [Google Scholar]
  5. Ambros V., Baltimore D. 1978; Protein is linked to the 5-end of poliovirus RNA by a phosphodiester linkage to tyrosine. Journal of Biological Chemistry 60:5263–5266
    [Google Scholar]
  6. Andino R., Rieckhof G. E., Baltimore D. 1990; A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63:369–380
    [Google Scholar]
  7. Atreya C. D., Raccah B., Pirone T. P. 1990; A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178:161–165
    [Google Scholar]
  8. Atreya P. L., Atreya C. D., Pirone T. P. 1991; Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proceedings of the National Academy of Sciences, U.S.A 88:7887–7891
    [Google Scholar]
  9. Barnett O. W. 1991; Potyviridae, a proposed family of plant viruses. Archives of Virology 118:139–141
    [Google Scholar]
  10. Baunoch D. A., Das P., Hari V. 1990; Potato virus Y helper component protein is associated with amorphous inclusions. Journal of General Virology 71:2479–2482
    [Google Scholar]
  11. Baunoch D. A., Das P., Browning M. E., Hari V. 1991; A temporal study of the expression of the capsid, cytoplasmic inclusion and nuclear inclusion proteins of tobacco etch potyvirus in infected plants. Journal of General Virology 72:487–492
    [Google Scholar]
  12. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences, U.S.A 85:7872–7876
    [Google Scholar]
  13. Beachy R. N., Loesch-Fries S., Tumer N. E. 1990; Coat protein- mediated resistance against virus infection. Annual Review of Phytopathology 28:451–474
    [Google Scholar]
  14. Berger P. H., Pirone T. P. 1986; The effect of helper component on the uptake and localization of potyviruses in Myzus persicae. Virology 153:256–261
    [Google Scholar]
  15. Berger P. H., Hunt A. G., Domier L. L., Hellmann G. M., Stram Y., Thornbury D. W., Pirone T. P. 1989; Expression in transgenic plants of a viral gene product that mediates insect transmission of potyviruses. Proceedings of the National Academy of Sciences, U.S.A 86:8402–8406
    [Google Scholar]
  16. Bienz K., Egger D., Pasamontes L. 1987; Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology 160:220–226
    [Google Scholar]
  17. Brakke M. K., Ball E. M., Hsu Y. H., Langenberg W. G. 1987; Wheat streak mosaic virus cylindrical inclusion body protein. Journal of General Virology 68:281–287
    [Google Scholar]
  18. Brault V., Hibrand L., Candresse T., Le Gall O., Dunez J. 1989; Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA 2. Nucleic Acids Research 17:7809–7819
    [Google Scholar]
  19. Calder V. L., Ingerfeld M. 1990; The roles of the cylindrical inclusion protein of a potyvirus in the induction of vesicles and in cell-to-cell spread. Journal of Structural Biology 105:62–66
    [Google Scholar]
  20. Carrington J. C., Dougherty W. G. 1987a; Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. Journal of Virology 61:2540–2548
    [Google Scholar]
  21. Carrington J. C., Dougherty W. G. 1987b; Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology 160:355–362
    [Google Scholar]
  22. Carrington J. C., Dougherty W. G. 1988; A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proceedings of the National Academy of Sciences, U.S.A 85:3391–3395
    [Google Scholar]
  23. Carrington J. C., Freed D. D. 1990; Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. Journal of Virology 64:1590–1597
    [Google Scholar]
  24. Carrington J. C., Cary S. M., Dougherty W. G. 1988; Mutational analysis of tobacco etch virus polyprotein processing: cis and traits proteolytic activities of polyproteins containing the 49-kilodalton proteinase. Journal of Virology 62:2313–2320
    [Google Scholar]
  25. Carrington J. C., Cary S. M., Parks T. D., Dougherty W. G. 1989a; A second proteinase encoded by a plant potyvirus genome. EMBO Journal 8:365–370
    [Google Scholar]
  26. Carrington J. C., Freed D. D., Sanders T. C. 1989b; Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63:4459–4463
    [Google Scholar]
  27. Carrington J. C., Freed D. D., Oh C.-S. 1990; Expression of potyvirai polyproteins in transgenic plants reveals three proteolytic activities required for complete processing. EMBO Journal 9:1347–1353
    [Google Scholar]
  28. Carrington J. C., Freed D. D., Leinicke A. J. 1991; Bipartite signal sequence mediates nuclear translocation of the plant potyvirai NIa protein. The Plant Cell 3:953–962
    [Google Scholar]
  29. Chang C.-A., Hiebert E., Purcifull D. E. 1988; Analysis of in vitro translation of bean yellow mosaic virus RNA: inhibition of proteolytic processing by antiserum to the 49K. nuclear inclusion protein. Journal of General Virology 69:1117–1122
    [Google Scholar]
  30. Choi G. H., Shapira R., Nuss D. L. 1991a; Cotranslational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proceedings of the National Academy of Sciences, U.S.A 88:1167–1171
    [Google Scholar]
  31. Choi G. H., Pawlyk D. M., Nuss D. L. 1991b; The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183:747–752
    [Google Scholar]
  32. Citovsky V., Knorr D., Schuster G., Zambryski P. 1990; The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid-binding protein. Cell 60:637–647
    [Google Scholar]
  33. Company M., Arenas J., Abelson J. 1991; Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature, London 349:487–493
    [Google Scholar]
  34. Davidson A. D., Pröls M., Schell J., Steinbiss H.-H. 1991; The nucleotide sequence of RNA 2 of barley yellow mosaic virus. Journal of General Virology 72:989–993
    [Google Scholar]
  35. De Groot R. J., Hardy W. R., Shirako Y., Strauss J. H. 1990; Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase Evidence for temporal regulation of polyprotein processing in vivo. EMBO Journal 9:2631–2638
    [Google Scholar]
  36. De Mejia M. V. G., Hiebert E., Purcifull D. E. 1985a; Isolation and partial characterization of the amorphous cytoplasmic inclusions associated with infections caused by two potyviruses. Virology 142:24–33
    [Google Scholar]
  37. De Mejia M. V. G., Hiebert E., Purcifull D. E., Thornbury D. W., Pirone T. P. 1985b; Identification of potyvirai amorphous inclusion protein as a nonstructural virus-specific protein related to helper component. Virology 142:34–43
    [Google Scholar]
  38. Dinant S., Lot H., Albouy J., Kuziak C., Meyer M., Astier-Manifacier S. 1991; Nucleotide sequence of the 3′ terminal region of lettuce mosaic potyvirus RNA shows a Gln/Val dipeptide at the cleavage site between the polymerase and the coat protein. Archives of Virology 116:235–252
    [Google Scholar]
  39. Dmitrieva T. M., Norkina K. B., Agol V. I. 1991; Encephalomyocarditis virus RNA polymerase preparations, with and without RNA helicase activity. Journal of Virology 65:2714–2717
    [Google Scholar]
  40. Domier L. L., Franklin K. M., Shahabuddin M., Hellmann G. M., Overmeyer J. H., Hiremath S. T., Siaw M. F. E., Lomonossoff G. P., Shaw J. G., Rhoads R. E. 1986; The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Research 14:5417–5430
    [Google Scholar]
  41. Domier L. L., Shaw J. G., Rhoads R. E. 1987; Potyvirai proteins share amino acid sequence homology with picoma-, como-, and caulimoviral proteins. Virology 158:20–27
    [Google Scholar]
  42. Domier L. L., Franklin K. M., Hunt A. G., Rhoads R. E., Shaw J. G. 1989; Infectious in vitro transcripts from cloned cDNA of a potyvirus, tobacco vein mottling virus. Proceedings of the National Academy of Sciences, U.S.A 86:3509–3513
    [Google Scholar]
  43. Dorssers L., Van Der Krol S., Van Der Meer J., Van Kammen A., Zabel P. 1984; Purification of cowpea mosaic virus RNA replication complex: identification of a virus-encoded 110, 000-dalton polypeptide responsible for RNA chain elongation. Proceedings of the National Academy of Sciences, U.S.A 81:1951–1955
    [Google Scholar]
  44. Dougherty W. G., Carrington J. C. 1988; Expression and function of potyvirai gene products. Annual Review of Phytopathology 26:123–143
    [Google Scholar]
  45. Dougherty W. G., Hiebert E. 1980; Translation of potyvirus RNA in a rabbit reticulocyte lysate: identification of nuclear inclusion proteins as products of tobacco etch virus RNA translation and cylindrical inclusion protein as a product of the potyvirus genome. Virology 104:174–182
    [Google Scholar]
  46. Dougherty W. G., Parks T. D. 1989; Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology 172:145–155
    [Google Scholar]
  47. Dougherty W. G., Parks T. D. 1991; Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology 183:449–456
    [Google Scholar]
  48. Dougherty W. G., Carrington J. C., Cary S. M., Parks T. D. 1988; Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO Journal 7:1281–1287
    [Google Scholar]
  49. Dougherty W. G., Cary S. M., Parks T. D. 1989a; Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171:356–364
    [Google Scholar]
  50. Dougherty W. G., Parks T. D., Cary S. M., Bazan J. F., Fletterick R. J. 1989b; Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172:302–310
    [Google Scholar]
  51. Dougherty W. G., Parks T. D., Smith H. A., Lindbo J. A. 1990; Expression of the potyvirus genome: the role of proteolytic processing. In Viral Genes and Plant Pathogenesis pp 124–139 Edited by Pirone T. P., Shaw J. G. New York & Berlin: Springer-Verlag;
    [Google Scholar]
  52. Edwardson J. R. 1974; Some properties of the potato virus Y-group. Florida Agricultural Experimental Station Monograph Series 4: 225 pp
    [Google Scholar]
  53. Eggenberger A. L., Stark D. M., Beachy R. N. 1989; The nucleotide sequence of a soybean mosaic virus coat protein-coding region and its expression in Escherichia coli, Agrobacterium tumefaciens and tobacco callus. Journal of General Virology 70:1853–1860
    [Google Scholar]
  54. Gadh I. P. S., Hari V. 1986; Association of tobacco etch virus related RNA with chloroplasts in extracts of infected plants. Virology 150:304–307
    [Google Scholar]
  55. Gal-On A., Antignus Y., Rosner A., Raccah B. 1990; Nucleotide sequence of the zucchini yellow mosaic virus capsidencoding gene and its expression in Escherichia coli. Gene 87:273–277
    [Google Scholar]
  56. Gal-On A., Antignus Y., Rosner A., Raccah B. 1991; Infectious in vitro RNA transcripts derived from cloned cDNA of the cucurbit potyvirus, zucchini yellow mosaic virus. Journal of General Virology 72:2639–2643
    [Google Scholar]
  57. García J. A., Laín S. 1991; Proteolytic activity of plum pox virus-tobacco etch virus chimeric NIa proteases. FEBS Letters 281:67–72
    [Google Scholar]
  58. García J. A., Riechmann J. L., Laín S. 1989a; Proteolytic activity of the plum pox potyvirus NIa-like protein in Escherichia coli. Virology 170:362–369
    [Google Scholar]
  59. García J. A., Riechmann J. L., Laín S. 1989b; Artificial cleavage site recognized by plum pox potyvirus protease in Escherichia coli. Journal of Virology 63:2457–2460
    [Google Scholar]
  60. García J. A., Riechmann J. L., Martín M. T., Laín S. 1989c; Proteolytic activity of the plum pox potyvirus NIa-like protein on excess of natural and artificial substrates in Escherichia coli. FEBS Letters 257:269–273
    [Google Scholar]
  61. García J. A., Laín S., Cervera M. T., Riechmann J. L., Martin M. T. 1990; Mutational analysis of plum pox potyvirus processing by the NIa protease in Escherichia coli. Journal of General Virology 71:2773–2779
    [Google Scholar]
  62. Ghabrial S. A., Smith H. A., Parks T. D., Dougherty W. G. 1990; Molecular genetic analyses of the soybean mosaic virus NIa protease. Journal of General Virology 71:1921–1927
    [Google Scholar]
  63. Giachetti C., Semler B. L. 1991; Role of a viral membrane polypeptide in strand-specific initiation of poliovirus RNA synthesis. Journal of Virology 65:2647–2654
    [Google Scholar]
  64. Gibbs A. 1987; Molecular evolution of viruses: ‘trees’, ‘clocks’ and ‘modules’. Journal of Cell Science (Supplement) 7319–337
    [Google Scholar]
  65. Goldbach R. 1986; Molecular evolution of plant RNA viruses. Annual Review of Phytopathology 24:289–310
    [Google Scholar]
  66. Goldbach R. 1987; Genome similarities between plant and animal RNA viruses. Microbiological Sciences 4:197–202
    [Google Scholar]
  67. Goldbach R., Eggen R., de Jager C., Van Kammen A., Van Lent R., Rezelman G., Wellink J. 1990; Genetic organization, evolution and expression of plant viral RNA genomes. In Recognition and Response in Plant-Virus Interactions, NATO ASI Series vol H41 pp 147–162 Edited by Fraser R. S. S. Berlin & Heidelberg: Springer-Verlag;
    [Google Scholar]
  68. Gorbalenya A. E., Koonin E. V. 1989; Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Research 17:8413–8440
    [Google Scholar]
  69. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1988; A novel superfamily of nucleoside triphosphatebinding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Letters 235:16–24
    [Google Scholar]
  70. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989a; Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases: a distinct protein superfamily with a common structural fold. FEBS Letters 243:103–114
    [Google Scholar]
  71. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1989b; Two related superfamilies of putative helicases involved in replication, recombination, repair, and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–4730
    [Google Scholar]
  72. Graybosch R., Hellmann G. M., Shaw J. G., Rhoads R. E., Hunt A. G. 1989; Expression of a potyvirus non-structural protein in transgenic tobacco. Biochemical and Biophysical Research Communications 160:425–432
    [Google Scholar]
  73. Hardy W. R., Strauss J. H. 1989; Processing the non-structural polyproteins of Sindbis virus: non-structural proteinase is in the C-terminal half of nsP2 and functions in cis and trans. Journal of Virology 63:4653–4664
    [Google Scholar]
  74. Hari V., Siegel A., Rozek D., Timberlake W. E. 1979; The RNA of tobacco etch virus contains poly(A). Virology 92:568–571
    [Google Scholar]
  75. Harrison B. D., Robinson D. J. 1988; Molecular variations in vector-borne plant viruses: epidemiological significance. Philosophical Transactions of the Royal Society of London B 321 447–462
    [Google Scholar]
  76. Hayes R. J., Buck K. W. 1990; Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363–368
    [Google Scholar]
  77. Hellmann G. M., Thornbury D. W., Hiebert E., Shaw J. G., Pirone T. P., Rhoads R. E. 1983; Cell-free translation of tobacco vein mottling virus RNA. II. Immunoprecipitation of products by antisera to cylindrical inclusion, nuclear inclusion and helper component proteins. Virology 124:434–444
    [Google Scholar]
  78. Hellmann G. M., Shaw J. G., Rhoads R. E. 1988; In vitro analysis of tobacco vein mottling virus NIa cistron: evidence for a virus-encoded protease. Virology 163:554–562
    [Google Scholar]
  79. Hiebert E., Purcifull D. E., Christie R. G. 1984a; Purification and immunological analysis of plant viral inclusion bodies. In Methods in Virology vol 8 pp 225–280 Edited by Maramorosch K., Koprowski H. Orlando: Academic Press;
    [Google Scholar]
  80. Hiebert E., Thornbury D. W., Pirone T. P. 1984b; Immunoprecipitation analysis of potyviral in vitro translation products using antisera to helper component of tobacco vein mottling virus and potato virus Y. Virology 135:1–9
    [Google Scholar]
  81. Hodgman T. C. 1988; A new superfamily of replicative proteins. Nature, London 333:22–23 (Erratum, 333, 578)
    [Google Scholar]
  82. Hull R. 1989; The movement of viruses in plants. Annual Review of Phytopathology 27:213–240
    [Google Scholar]
  83. Jackson R. J., Howell M. T., Kaminski A. 1990; The novel mechanism of initiation of picomavirus RNA translation. Trends in Biochemical Sciences 15:477–483
    [Google Scholar]
  84. Jagadish M. N., Ward C. W., Gough K. H., Tulloch P. A., Whittaker L. A., Shukla D. D. 1991; Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into viruslike particles. Journal of General Virology 72:1543–1550
    [Google Scholar]
  85. Jobling S. A., Gehrke L. 1987; Enhanced translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence. Nature, London 325:622–625
    [Google Scholar]
  86. Johnson K. L., Sarnow P. 1991; Three poliovirus 2B mutants exhibit non-complementable defects in viral RNA amplification and display dosage-dependent dominance over wild-type poliovirus. Journal of Virology 65:4341–4349
    [Google Scholar]
  87. Kashiwazaki S., Minobe Y., Omura T., Hibino H. 1990; Nucleotide sequence of barley yellow mosaic virus RNA 1: a close evolutionary relationship with potyviruses. Journal of General Virology 71:2781–2790
    [Google Scholar]
  88. Kashiwazaki S., Minobe Y., Hibino H. 1991; Nucleotide sequence of barley yellow mosaic virus RNA 2. Journal of General Virology 72:995–999
    [Google Scholar]
  89. Knuhtsen H., Hiebert E., Purcifull D. E. 1974; Partial purification and some properties of tobacco etch virus induced intranuclear inclusions. Virology 61:200–209
    [Google Scholar]
  90. Kroner P. A., Young B. M., Ahlquist P. 1990; Analysis of the role of brome mosaic virus la protein domains in RNA replication, using linker insertion mutagenesis. Journal of Virology 64:6110–6120
    [Google Scholar]
  91. LaíN S. 1990 Secuencia del RNA genómico del virus de la sharka (PPV): actividad RNA helicasa asociada a una proteina viral Ph,. D. thesis Universidad Autonoma de Madrid;
    [Google Scholar]
  92. Laín S., Riechmann J. L., Méndez E., Garcìa J. A. 1988; Nucleotide sequence of the 3′ terminal region of plum pox potyvirus RNA. Virus Research 10:325–342
    [Google Scholar]
  93. Laín S., Riechmann J. L., García J. A. 1989a; The complete nucleotide sequence of plum pox potyvirus RNA. Virus Research 13:157–172
    [Google Scholar]
  94. Laín S., Riechmann J. L., Martin M. T., García J. A. 1989b; Homologous potyvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins. Gene 82:357–362
    [Google Scholar]
  95. Laín S., Riechmann J. L., García J. A. 1990; RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Research 18:7003–7006
    [Google Scholar]
  96. Laín S., Martin M. T., Riechmann J. L., García J. A. 1991; Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicaselike protein. Journal of Virology 63:1–6
    [Google Scholar]
  97. Langenberg W. G. 1986; Virus protein associated with cylindrical inclusions of two viruses that infect wheat. Journal of General Virology 61:1161–1168
    [Google Scholar]
  98. Langenberg W. G., Purcifull D. E. 1989; Interactions between pepper ringspot virus and cylindrical inclusions of potyviruses. Journal of Ultrastructure and Molecular Structure Research 102:53–58
    [Google Scholar]
  99. Langenberg W. G., Lommel S. A., Purcifull D. E. 1989; Sorghum chlorotic spot virus binds to potyvirus cylindrical inclusions in tobacco leaf cells. Journal of Ultrastructure and Molecular Structure Research 102:47–52
    [Google Scholar]
  100. Lawson C., Kaniewski W., Haley L., Rozman R., Newell C., Sanders P., Tumer N. E. 1990; Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Biol Technology 8:127–134
    [Google Scholar]
  101. Lawson R. H., Hearon S. S. 1971; The association of pinwheel inclusions with plasmodesmata. Virology 44:454–456
    [Google Scholar]
  102. Le Gall O., Candresse T., Brault V., Dunez J. 1989; Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA 1. Nucleic Acids Research 17:7795–7807
    [Google Scholar]
  103. Lesemann D.-E. 1988; Cytopathology. In The Plant Viruses vol 4 The Filamentous Plant Viruses, pp 179–235 Edited by Milne R. G. New York & London: Plenum Press;
    [Google Scholar]
  104. Li J. P., Baltimore D. 1988; Isolation of poliovirus 2C mutants defective in viral RNA synthesis. Journal of Virology 62:4016–4021
    [Google Scholar]
  105. Ling K., Namba S., Gonsalves C., Slighton J. L., Gonsalves G. 1991; Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Bio/Technology 9:752–758
    [Google Scholar]
  106. Luciano C. S., Rhoads R. E., Shaw J. G. 1987; Synthesis of potyviral RNA and proteins in tobacco mesophyll protoplasts inoculated by electroporation. Plant Science 51:295–303
    [Google Scholar]
  107. Maiss E., Timpe U., Brisske A., Jelkmann W., Casper R., Himmler G., Mattanovich D., Katinger H. W. D. 1989; The complete nucleotide sequence of plum pox virus RNA. Journal of General Virology 70:513–524
    [Google Scholar]
  108. Maiss E., Timpe U., Brisske-Rode A., Lesemann D.-E., Casper R. 1992; Infectious in vivo transcripts of a plum pox potyvirus full-length cDNA clone containing the cauliflower mosaic virus 35S RNA promoter. Journal of General Virology (in press)
    [Google Scholar]
  109. Martín M. T., García J. A. 1991; Plum pox potyvirus RNA replication in a crude membrane fraction from infected Nicotiana clevelandii leaves. Journal of General Virology 72:785–790
    [Google Scholar]
  110. Martín M. T., López Otín C., Laín S., García J. A. 1990; Determination of polyprotein processing sites by amino terminal sequencing of nonstructural proteins encoded by plum pox potyviruses. Virus Research 15:97–106
    [Google Scholar]
  111. Miller R. H., Purcell R. H. 1990; Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proceedings of the National Academy of Sciences, U.S.A 87:2057–2061
    [Google Scholar]
  112. Milne R. G. 1988; Taxonomy of the rod-shaped filamentous viruses. In The Plant Viruses vol 4 The Filamentous Plant Viruses, pp 3–50 Edited by Milne R. G. New York & London: Plenum Press;
    [Google Scholar]
  113. Morozov S. Yu., Lukasheva L. I., Chernov B. K., Skryabin K. G., Atabekov J. G. 1987; Nucleotide sequence of the open reading frames adjacent to the coat protein cistron in potato virus X genome. FEBS Letters 213:438–442
    [Google Scholar]
  114. Murphy J. F., Rhoads R. E., Hunt A. G., Shaw J. G. 1990; The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology 178:285–288
    [Google Scholar]
  115. Murphy J. F., Rychlik W., Rhoads R. E., Hunt A. G., Shaw J. G. 1991; A tyrosine residue in the small nuclear inclusion protein of tobacco vein mottling virus links the VPg to the viral RNA. Journal of Virology 65:511–513
    [Google Scholar]
  116. Oh C.-S., Carrington J. C. 1989; Identification of essential residues in potyvirus proteinase HC-Pro by site-directed mutagenesis. Virology 173:692–699
    [Google Scholar]
  117. Palmenberg A. C. 1990; Proteolytic processing of picornaviral polyprotein. Annual Review of Microbiology 44:603–623
    [Google Scholar]
  118. Parks T. D., Dougherty W. G. 1991; Substrate recognition by the NIa proteinase of two potyviruses involves multiple domains: characterization using genetically engineered hybrid proteinase molecules. Virology 182:17–27
    [Google Scholar]
  119. Parks T. D., Smith H. A., Dougherty W. G. 1992; Cleavage profiles of tobacco etch virus (TEV)-derived substrates mediated by precursor and processed forms of the TEV proteinase. Journal of General Virology 73:149–155
    [Google Scholar]
  120. Pirone T. P., Thornbury D. W. 1983; Role of virion and helper component in regulating aphid transmission of tobacco etch virus. Phytopathology 73:872–875
    [Google Scholar]
  121. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3874
    [Google Scholar]
  122. Quadt R., Rosdorff H. J. M., Hunt T. W., Jaspars E. M. 1991; Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase. Virology 182:309–315
    [Google Scholar]
  123. Quemada H., L’Hostis B., Gonsalves D., Reardon I. M., Heinrikson R., Hiebert E. L., Sieu L. C., Slightom J. L. 1990a; The nucleotide sequences of the 3′-terminal regions of papaya ringspot virus strains W and P. Journal of General Virology 71:203–210
    [Google Scholar]
  124. Quemada H., Sieu L. C., Siemieniak D. R., Gonsalves D., Slightom J. L. 1990b; Watermelon mosaic virus II and zucchini yellow mosaic virus: cloning of 3′-terminal regions, nucleotide sequences, and phylogenetic comparisons. Journal of General Virology 71:1451–1460
    [Google Scholar]
  125. Query C. C., Bentley R. C., Keene J. D. 1989; A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57:89–101
    [Google Scholar]
  126. Restrepo M. A., Freed D. D., Carrington J. C. 1990; Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998
    [Google Scholar]
  127. Riechmann J. L., Laín S., García J. A. 1989; The genome-linked protein and 5′ end RNA sequence of plum pox potyvirus. Journal of General Virology 70:2785–2789
    [Google Scholar]
  128. Riechmann J. L., Laín S., García J. A. 1990; Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology 177:710–716
    [Google Scholar]
  129. Riechmann J. L., Laín S., García J. A. 1991; Identification of the initiation codon of plum pox potyvirus genomic RNA. Virology (in press)
    [Google Scholar]
  130. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., Casse-Delbart F. 1989; Nucleotide sequence of potato virus Y (N strain) genomic RNA. Journal of General Virology 70:935–947
    [Google Scholar]
  131. Rodriguez-Cerezo E., Shaw J. G. 1991; Two newly-detected non-structural viral proteins in potyvirus-infected cells. Virology (in press)
    [Google Scholar]
  132. Rodriguez-Cerezo E., Klein P. G., Shaw J. G. 1991; A determinant of disease symptom severity is located in the 3′-terminal region of the RNA of a plant virus. Proceedings of the National Academy of Sciences, U.S.A 88: (in press)
    [Google Scholar]
  133. Rothberg P. G., Harris T. J. R., Nomoto A., Wimmer E. 1978; O4-(5′-uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proceedings of the National Academy of Sciences, U.S.A 75:4868–4872
    [Google Scholar]
  134. Saito T., Meshi T., Takamatsu N., Okada Y. 1987; Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proceedings of the National Academy of Sciences, U.S.A 84:6074–6077
    [Google Scholar]
  135. Shahabuddin M., Shaw J. G., Rhoads R. E. 1988; Mapping of the tobacco vein mottling virus VPg cistron. Virology 163:635–637
    [Google Scholar]
  136. Shaw J. G., Hunt A. G., Pirone T. P., Rhoads R. E. 1990; Organization and expression of potyviral genes. In Viral Genes and Plant Pathogenesis pp 107–123 Edited by Pirone T. P., Shaw J. G. New York & Berlin: Springer-Verlag;
    [Google Scholar]
  137. Shukla D. D., Ward C. W. 1988; Amino acid sequence homology of coat proteins as a basis for identification and classification of the potyvirus group. Journal of General Virology 69:2703–2710
    [Google Scholar]
  138. Shukla D. D., Ward C. W. 1989a; Identification and classification of potyviruses on the basis of coat protein sequence data and serology. Archives of Virology 106:171–200
    [Google Scholar]
  139. Shukla D. D., Ward C. W. 1989b; Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Advances in Virus Research 36:273–314
    [Google Scholar]
  140. Shukla D. D., Ford R. E., Tosic M., Jilka J., Ward C. W. 1989; Possible members of the potyvirus group transmitted by mites or whiteflies share epitopes with aphid-transmitted definitive members of the group. Archives of Virology 105:143–151
    [Google Scholar]
  141. Shukla D. D., Frenkel M. J., Ward C. W. 1991; Structure and function of the potyvirus genome with special reference to the coat protein coding region. Canadian Journal of Plant Pathology 13:178191
    [Google Scholar]
  142. Siaw M. F. E., Shahabuddin M., Ballard S., Shaw J. G., Rhoads R. E. 1985; Identification of a protein covalently linked to the 5′ terminus of tobacco vein mottling virus RNA. Virology 142:134–143
    [Google Scholar]
  143. Stark D. M., Beachy R. N. 1989; Protection against potyvirus infection in transgenic plants: evidence for broad spectrum resistance. Bio/Technology 7:1257–1262
    [Google Scholar]
  144. Strebel K., Beck E. 1986; A second protease of foot-and-mouth disease virus. Journal of Virology 58:893–899
    [Google Scholar]
  145. Takeda N., Kuhn R. J., Yang C.-F., Takegami T., Wimmer E. 1986; Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. Journal of Virology 60:43–53
    [Google Scholar]
  146. Teycheney P. Y., Tavert G., Delbos R., Ravelonandro M., Dunez J. 1989; The complete nucleotide sequence of plum pox virus RNA (strain D). Nucleic Acids Research 17:10115–10116
    [Google Scholar]
  147. Thomas A. A. M., ter Haar E., Wellink J., Voorma H. O. 1991; Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. Journal of Virology 65:2953–2959
    [Google Scholar]
  148. Thornbury D. W., Pirone T. P. 1983; Helper components of two potyviruses are serologically distinct. Virology 125:487–190
    [Google Scholar]
  149. Thornbury D. W., Hellmann G. M., Rhoads R. E., Pirone T. P. 1985; Purification and characterization of potyvirus helper component. Virology 144:260–267
    [Google Scholar]
  150. Thornbury D. W., Patterson C. A., Dessens J. T., Pirone T. P. 1990; Comparative sequence of the helper component (HC) region of potato virus Y and a HC-defective strain, potato virus C. Virology 178:573–578
    [Google Scholar]
  151. Tobin G. J., Young D. C., Flanegan J. B. 1989; Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA. Cell 59:511–519
    [Google Scholar]
  152. Turpen T. 1989; Molecular cloning of a potato virus Y genome: nucleotide sequence homology in non-coding regions of potyviruses. Journal of General Virology 70:1951–1960
    [Google Scholar]
  153. Uyeda I., Takahashi T., Shikata E. 1990; Sequence relatedness of clover yellow vein virus to bean yellow mosaic virus. Abstracts, VIIIth International Congress of Virology p 128
    [Google Scholar]
  154. van Lent J., Wellink J., Goldbach R. 1990; Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. Journal of General Virology 71:219–223
    [Google Scholar]
  155. Verchot J., Koonin E. V., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of a potyviral polyprotein functions as a third virus-encoded proteinase. Virology (in press)
    [Google Scholar]
  156. Vos P., Verver J., Jaegle M., Wellink J., van Kammen A., Goldbach R. 1988; Two viral proteins involved in the proteolytic processing of the cowpea mosaic virus polyproteins. Nucleic Acids Research 16:1967–1985
    [Google Scholar]
  157. Ward C. W., Shukla D. D. 1991; Taxonomy of potyviruses: current problems and some solutions. Intervirology 32:269–296
    [Google Scholar]
  158. Wellink J., van Kammen A. 1988; Proteases involved in the processing of viral polyproteins. Archives of Virology 98:1–26
    [Google Scholar]
  159. Wellink J., van Kammen A. 1989; Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and the capsid proteins. Journal of General Virology 70:2279–2286
    [Google Scholar]
  160. Wetzel T., Candresse T., Ravelonandro M., Delbos R. P., Mazyad H., Aboul-Ata A. E., Dunez J. 1991; Nucleotide sequence of the 3′-terminal region of the RNA of the El Amar strain of plum pox potyvirus. Journal of General Virology 72:1741–1746
    [Google Scholar]
  161. Zimmern D. 1987; Evolution of RNA viruses. In RNA Genetics pp 211–244 Edited by Holland J., Domingo E., Ahlquist P. Boca Raton: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-1-1
Loading
/content/journal/jgv/10.1099/0022-1317-73-1-1
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error