1887

Abstract

The primary structure of glycoprotein B (gB) is conserved strongly among many members of the , including some that differ vastly in their natural properties. To determine whether the structural similarity between the gBs of herpes simplex virus type 1 (HSV-1) and bovine herpesvirus type 1 (BHV-1) was reflected in functional homology, we constructed pseudodiploid HSV-1 virions which, in addition to their own gene encoding gB, also contained a gene for encoding BHV-1 gB. Two kinds of pseudodiploid viruses were constructed. In one, the coding sequences of the BHV-1 gB gene were linked to the 5′ flanking sequences of the HSV-1 thymidine kinase (TK) gene. In the other, the entire BHV-1 gB gene, including its own flanking sequences, was introduced into the TK gene. In cells infected with the viruses both HSV-1 and BHV-1 gB were made but they could be distinguished immunologically by monoclonal antibodies. Both glycoproteins were inserted into cellular and virion membranes but did not form oligomers with each other. A monoclonal antibody that binds to HSV-1 gB but not BHV-1 gB neutralized the parental HSV-1 and a revertant pseudodiploid virus from which the gene encoding BHV-1 gB had been excised, but was significantly less efficient at neutralizing the pseudodiploid viruses. This suggests that the BHV-1 homologue can complement the HSV-1 gB functions required for infectivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-2-385
1991-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/2/JV0720020385.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-2-385&mimeType=html&fmt=ahah

References

  1. Albrecht J.-C., Fleckenstein B. 1990; Structural organization of the conserved gene block of herpesvirus saimiri coding for DNA polymerase, glycoprotein B and major DNA binding protein. Virology 174:533–542
    [Google Scholar]
  2. Ali M., Buchen M., Ghosh H. 1987; Expression and nuclear envelope localization of biologically active fusion glycoprotein B of HSV in mammalian cells using cloned DNA. Proceedings of the National Academy of Sciences, U,. S,. A 84:5675–5679
    [Google Scholar]
  3. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. G., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  4. Blacklaws B. A., Nash A. A., Darby G. 1987; Specificity of the immune response of mice to the herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines. Journal of General Virology 68:1103–1114
    [Google Scholar]
  5. Bzik D. J., DeBroy C., Fox B. A., Pederson N. E., Person S. 1986; The nucleotide sequence of the gB glycoprotein gene of HSV-2 and comparison with the corresponding gene of HSV-1. Virology 155:322–333
    [Google Scholar]
  6. Cai W., Person S., Warner S. C., Zhou J., DeLuca N. A. 1987; Linker insertion, nonsense and restriction site deletion mutations of the gB glycoprotein gene of herpes simplex virus-1. Journal of Virology 61:714–721
    [Google Scholar]
  7. Cai W., Person S., DeBroy C., Gu B. 1988a; Functional regions and structural features of the gB glycoprotein of HSV-1. An analysis of linker insertion mutants. Journal of Molecular Biology 201:575–588
    [Google Scholar]
  8. Cai W., Gu B., Person S. 1988b; Role of the glycoprotein B of HSV-1 in viral entry and fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  9. Chan W. L., Tizard M. L. V., Faulkner L. 1989; Proliferative T cell response to glycoprotein B of the human herpesviruses: the influence of MHC and sequence of infection on the pattern of crossreactivity. Immunology 68:96–101
    [Google Scholar]
  10. Claesson-Welsh L., Spear P. G. 1986; Oligomerization of herpes simplex virus glycoprotein gB. Journal of Virology 60:803–806
    [Google Scholar]
  11. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3062
    [Google Scholar]
  12. Davison A. J., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  13. DeLuca N., Bzik D. J., Bond V. C., Person S., Snipes W. 1982; Nucleotide sequences of herpes simplex virus type 1 (HSV-1) affecting virus entry, cell fusion and production of glycoprotein gB (VP7). Virology 122:411–423
    [Google Scholar]
  14. Dente L., Cesareni G., Cortese R. 1983; pEMBL: a new family of single stranded plasmids. Nucleic Acids Research 11:1645–1655
    [Google Scholar]
  15. Eberle R., Mou S.-W. 1983; Relative titres of antibodies to individual polypeptide antigens of HSV-1 in human sera. Journal of Infectious Diseases 148:436–444
    [Google Scholar]
  16. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  17. Fitzpatrick D. R., Zamb T., Parker M. D., van Drunen Littel-Van Den Hurk S., Babiuk L. A., Lawman M. J. P. 1988; Expression of bovine herpesvirus 1 glycoproteins gI and gIII in transfected murine cells. Journal of Virology 62:4239–4248
    [Google Scholar]
  18. Glorioso J., Schroeder C. H., Kumel G., Szczesiul M., Levine M. 1984; Immunogenicity of herpes simplex virus glycoproteins gC and gB and their role in protective immunity. Journal of Virology 50:805–812
    [Google Scholar]
  19. Gong M., Ooka T., Matsuo T., Kieff E. 1987; Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB. Journal of Virology 61:499–508
    [Google Scholar]
  20. Hammerschmidt W., Conraths F., Mankertz J., Pauli G., Ludwig H., Buhk H.-J. 1988; Conservation of a gene cluster including glycoprotein B in bovine herpesvirus type 2 (BHV-2) and herpes simplex virus type 1 (HSV-1). Virology 165:388–405
    [Google Scholar]
  21. Highlander S. L., Cai W., Person S., Levine M., Glorioso J. C. 1988; Monoclonal antibodies define a domain on HSV gB involved in virus penetration. Journal of Virology 62:1881–1888
    [Google Scholar]
  22. Jacobson J. G., Martin S. L., Coen D. M. 1989; A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. Journal of Virology 63:1839–1843
    [Google Scholar]
  23. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. Journal of Virology 62:1347–1354
    [Google Scholar]
  24. Keller P. M., Davison A. J., Lowe R. S., Bennett C. D., Ellis R. W. 1986; Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster virus. Virology 152:181–191
    [Google Scholar]
  25. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, U,. S,. A 82:488–492
    [Google Scholar]
  26. Littlefield J. W. 1964; Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145:709–710
    [Google Scholar]
  27. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  28. McKnight S. L. 1980; The nucleotide sequence and transcript map of herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Manservigi R., Spear P. G., Buchan A. 1977; Cell fusion induced by herpes simplex virus is promoted and suppressed by different viral glycoproteins. Proceedings of the National Academy of Sciences. U,. S,. A. 74:3913–3917
    [Google Scholar]
  31. Misra V., Blumenthal R. M., Babiuk L. A. 1982a; Proteins specified by bovine herpesvirus-1 (infectious bovine rhinotracheitis virus). Journal of Virology 40:367–378
    [Google Scholar]
  32. Misra V., Gilchrist J. E., Weinmaster G., Qualtiere L., Van Den Hurk S., Babiuk L. A. 1982b; Herpes virus induced “early” glycoprotein: characterization and possible role in immune cytolysis. Journal of Virology 43:1046–1054
    [Google Scholar]
  33. Misra V., Nelson R., Smith M. 1988; Sequence of a bovine herpesvirus-1 glycoprotein gene that is homologous to the herpes simplex gene for the glycoprotein gB. Virology 166:542–549
    [Google Scholar]
  34. Nelson R., Adachi A.-M., Chisholm H., Misra V. 1989; Temperature-sensitive mutants of bovine herpesvirus type 1: mutants which make unaltered levels of ‘early’ glycoproteins but fail to synthesize a ‘late’ glycoprotein. Journal of General Virology 70:125–132
    [Google Scholar]
  35. Pellett P. E., Biggin M. D., Barrell B., Roizman B. 1985a; Epstein-Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. Journal of Virology 56:807–813
    [Google Scholar]
  36. Pellett P. E., Kousoulas K. G., Pereira L., Roizman B. 1985b; Anatomy of herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild-type and of monoclonal antibody-resistant mutants. Journal of Virology 53:243–253
    [Google Scholar]
  37. Pereira L., Dondero D., Norrild B., Roizman B. 1981; Differential immunological reactivity and processing of glycoproteins gA and gB of herpes simplex virus types 1 and 2 made in Vero and HEp-2 cells. Proceedings of the National Academy of Sciences, U,. S,. A. 78:5202–5206
    [Google Scholar]
  38. Pereira L., Dondero D., Roizman B. 1982; Herpes simplex virus glycoprotein gA/B: evidence that the infected Vero cell products comap and arise by proteolysis. Journal of Virology 44:88–97
    [Google Scholar]
  39. Pereira L., Ali M., Kousoulas K., Huo B., Banks T. 1989; Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24
    [Google Scholar]
  40. Riggio M. P., Cullinane A. A., Onions D. E. 1989; Identification and nucleotide sequence of the glycoprotein gB gene of equine herpesvirus 4. Journal of Virology 63:1123–1133
    [Google Scholar]
  41. Robbins A. K., Dorney D. J., Wathen M. W., Whealy M. E., Gold C., Watson R. J., Holland L. E., Weed S. D., Levine M., Glorioso J. C., Enquist L. W. 1987; The pseudorabies virus gII gene is closely related to the gB glycoprotein gene of herpes simplex virus. Journal of Virology 61:2691–2701
    [Google Scholar]
  42. Ross L. J. N., Sanderson M., Scott S. D., Binns M. M., Doel T., Milne B. 1989; Nucleotide sequence and characterization of the Marek’s disease virus homologue of glycoprotein B of herpes simplex virus. Journal of General Virology 70:1789–1804
    [Google Scholar]
  43. Sarmiento M., Hafley M., Spear P. G. 1979; Membrane proteins specified by herpes simplex virus. III. Role of glycoprotein VP7 (B2) in virion infectivity. Journal of Virology 29:1149–1158
    [Google Scholar]
  44. Smiley J. R., Fong B. S., Leung W. C. 1981; Construction of a double-jointed herpes simplex viral DNA molecule: inverted repeats are required for segment inversion and direct repeats promote deletions. Virology 113:345–362
    [Google Scholar]
  45. Stuve L. L., Brown-Shimer S., Pachl C., Najarian R., Dina D., Burke R. L. 1987; Structure and expression of the herpes simplex virus type 2 glycoprotein gB gene. Journal of Virology 61:326–335
    [Google Scholar]
  46. Whalley J. M., Robertson G. R., Scott N. A., Hudson G. C., Bell C. W., Woodworth L. M. 1989; Identification and nucleotide sequence of a gene in equine herpesvirus 1 analogous to the herpes simplex virus gene encoding the major envelope glycoprotein gB. Journal of General Virology 70:383–394 corrigendum 3513.
    [Google Scholar]
  47. Whitbeck J. C., Bello L. J., Lawrence W. C. 1988; Comparison of the bovine herpesvirus 1 gI gene and the herpes simplex virus type 1 gB. Journal of Virology 62:3319–3327
    [Google Scholar]
  48. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC9 vectors. Gene 33:103–119
    [Google Scholar]
  49. Zoller M. J., Smith M. 1982; Oligonucleotide directed mutagenesis using Ml3 derived vectors: an efficient and general procedure for the production of point mutagenesis in any fragment of DNA. Nucleic Acids Research 10:6487–6500
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-2-385
Loading
/content/journal/jgv/10.1099/0022-1317-72-2-385
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error