The primary structure of glycoprotein B (gB) is conserved strongly among many members of the , including some that differ vastly in their natural properties. To determine whether the structural similarity between the gBs of herpes simplex virus type 1 (HSV-1) and bovine herpesvirus type 1 (BHV-1) was reflected in functional homology, we constructed pseudodiploid HSV-1 virions which, in addition to their own gene encoding gB, also contained a gene for encoding BHV-1 gB. Two kinds of pseudodiploid viruses were constructed. In one, the coding sequences of the BHV-1 gB gene were linked to the 5′ flanking sequences of the HSV-1 thymidine kinase (TK) gene. In the other, the entire BHV-1 gB gene, including its own flanking sequences, was introduced into the TK gene. In cells infected with the viruses both HSV-1 and BHV-1 gB were made but they could be distinguished immunologically by monoclonal antibodies. Both glycoproteins were inserted into cellular and virion membranes but did not form oligomers with each other. A monoclonal antibody that binds to HSV-1 gB but not BHV-1 gB neutralized the parental HSV-1 and a revertant pseudodiploid virus from which the gene encoding BHV-1 gB had been excised, but was significantly less efficient at neutralizing the pseudodiploid viruses. This suggests that the BHV-1 homologue can complement the HSV-1 gB functions required for infectivity.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error