1887

Abstract

A relatively simple and sensitive method is described which enables the effect of monoclonal antibodies (MAbs) on the receptor-destroying enzyme (RDE) and the haemagglutination (HA) activity of bovine coronavirus (BCV) to be analysed in one assay. A lysate of HRT-18 cells infected with the L9 strain of BCV was found to have a higher RDE:HA ratio than purified virus. At 4 °C the lysate induced an HA pattern which completely disappeared upon raising of the temperature to 37 °C. This L9-infected cell lysate was used to determine the HA inhibition (HAI) titres of MAbs directed against the surface glycoproteins S and HE of BCV. Thereafter, the test plates were incubated at 37 °C to enable the ability of the MAbs to prevent elution of virus from BCV-erythrocyte complexes to be assessed. No inhibition of RDE was detectable with MAbs against glycoprotein S, which had HAI titres ranging from 1:16 to 1:128. On the other hand, MAbs directed against glycoprotein HE had similar HAI titres, but they inhibited elution of 8 HA units of BCV at titres of up to 1:65000.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-11-2817
1991-11-01
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/11/JV0720112817.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-11-2817&mimeType=html&fmt=ahah

References

  1. Abraham S., Kienzle T. E., Lapps W., Brian D. A. 1990; Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 176:296–301
    [Google Scholar]
  2. Boireau P., Cruciere C., Laporte J. 1990; Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains. Journal of General Virology 71:487–492
    [Google Scholar]
  3. Boyle J. F., Weismiller D. G., Holmes K. V. 1987; Genetic resistance to mouse hepatitis virus correlates with absence of virusbinding activity on target tissues. Journal of Virology 61:185–189
    [Google Scholar]
  4. Cavanagh D., Brian D. A., Enjuanes L., Holmes K. V., Lai M. C., Laude H., Siddell S. G., Spaan W., Taguchi F., Talbot O. J. 1990; Recommendations of the coronavirus study group for the nomenclature of the structural proteins, mRNAs, and genes of coronaviruses. Virology 176:306–307
    [Google Scholar]
  5. Deregt D., Babiuk L. A. 1987; Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161:410–420
    [Google Scholar]
  6. Deregt D., Sabara M., Babiuk L. A. 1987; Structural proteins of bovine coronavirus and their intracellular processing. Journal of General Virology 68:2863–2877
    [Google Scholar]
  7. Deregt D., Parker M. D., Cox G. C., Babiuk L. A. 1989; Mapping of neutralizing epitopes to fragments of the bovine coronavirus E2 protein by proteolysis of antigen-antibody complexes. Journal of General Virology 70:647–658
    [Google Scholar]
  8. Doughri A. M., Storz J., Hajer I., Fernando S. 1976; Morphology and morphogenesis of a coronavirus infecting intestinal epithelial cells of newborn calves. Experimental and Molecular Pathology 25:355–370
    [Google Scholar]
  9. El-Ghorr A. A., Snodgrass D. R., Scott F. M. M., Campbell I. 1989; A serological comparison of bovine coronavirus strains. Archives of Virology 104:241–248
    [Google Scholar]
  10. Herrler G., Rott R., Klenk H.-D., Muller H. P., Shukda A. K., Schauer R. 1985; The receptor-destroying enzyme of influenza C virus: neuraminidate-O-acetyl-esterase. EMBO Journal 4:1503–1506
    [Google Scholar]
  11. Hussain K. A., Storz J., Kousoulas K. G. 1991; Comparison of bovine coronavirus (BVC) antigens: monoclonal antibodies to glycoprotein GP100 distinguish between vaccine and wild-type strains. Virology 183:442–445
    [Google Scholar]
  12. Kienzle T. E., Abraham S., Hogue B. G., Brian D. A. 1990; Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. Journal of Virology 64:1834–1838
    [Google Scholar]
  13. King B., Brian D. A. 1982; Bovine coronavirus structural proteins. Journal of Virology 42:700–707
    [Google Scholar]
  14. King B., Potts B., Brian D. A. 1985; Bovine coronavirus hemagglutinin protein. Virus Research 2:53–59
    [Google Scholar]
  15. Mebus C. A., Stair E. L., Rhodes M. B., Twiehaus M. J. 1973; Neonatal calf diarrhea: propagation, attenuation, and characteristics of coronavirus-like agents. American Journal of Veterinary Research 34:145–150
    [Google Scholar]
  16. Parker M. D., Cox G. J., Deregt D., Fitzpatrick D. R., Babiuk L. A. 1989; Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. Journal of General Virology 70:155–164
    [Google Scholar]
  17. Parker M. D., Yoo D., Cox G. J., Babiuk L. A. 1990; Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells. Journal of General Virology 71:263–270
    [Google Scholar]
  18. Saif L. J., Redman D. R., Brock K. V., Kohler E. M., Heckert R. A. 1988; Winter dysentery in adult dairy cattle: detection of coronaviruses in the feces. Veterinary Record 123:300–301
    [Google Scholar]
  19. Schultze B., Gross H. J., Brossmer R., Klenk H. D., Herrler G. 1990; Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: comparison with bovine coronavirus and influenza C virus. Virus Research 16:185–194
    [Google Scholar]
  20. Schultze B., Wahn K., Klenk H.-D., Herrler G. 1991a; Isolated HE protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptorbinding activity. Virology 180:221–228
    [Google Scholar]
  21. Schultze B., Gross H. J., Brossmer R., Herrler G. 1991b; The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. Journal of Virology (in press)
    [Google Scholar]
  22. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  23. StCyr-Coats K., Storz J., Hussain K. A., Schnorr K. L. 1988; Structural proteins of bovine coronavirus strain L9: effects of the host cell and trypsin treatment. Archives of Virology 103:35–45
    [Google Scholar]
  24. Storz J., Rott R., Kaluza G. 1981; Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infection and Immunity 31:1214–1222
    [Google Scholar]
  25. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  26. Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. 1988a; The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. Journal of Virology 62:4686–4690
    [Google Scholar]
  27. Vlasak R., Luytje W., Spaan W., Palese P. 1988b; Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proceedings of the National Academy of Sciences, U.S.A. 85:4526–4529
    [Google Scholar]
  28. Wege H., Wege H., Nagashima K., ter Meulen V. 1979; Structural polypeptides of the murine coronavirus JHM. Journal of General Virology 42:37–47
    [Google Scholar]
  29. Zhang X. M., Kousoulas K. G., Storz J. 1991; Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology 183397–404
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-72-11-2817
Loading
/content/journal/jgv/10.1099/0022-1317-72-11-2817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error