1887

Abstract

An ultrastructural study was performed on rabbit epithelial RK-13 cells and CD4 human T lymphocyte lines infected with various recombinant vaccinia viruses (RVVs) expressing genes of human immunodeficiency virus (HIV): the mature p17 or p24 gag domain alone, the entire or truncated gene, the reverse transcriptase domain, or the genes with a frameshift mutation. Cells infected with RVVs that produced the gag polyprotein with a predicted of more than 48K showed budding and release of HIV-like particles into the extracellular space. These particles were not observed in cells expressing a truncated gene (p17 and p24 regions). Mature HIV-like particles were observed extracellularly when the entire gene and the protease region of the gene were expressed. In contrast, in cells infected with RVVs that contained the gene with a frameshift mutation, neither recognizable budding structures nor extracellular HIV-like particles could be detected. These results suggest that the gene, particularly its 3′ terminus, is necessary for the assembly of HIV particles. In addition, the protease region of the gene seems to be required for morphological maturation of HIV particles, but complete proteolytic cleavage of the gag protein may prevent bud formation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-72-10-2509
1991-10-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/72/10/JV0720102509.html?itemId=/content/journal/jgv/10.1099/0022-1317-72-10-2509&mimeType=html&fmt=ahah

References

  1. Berg J. M. 1986; Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487
    [Google Scholar]
  2. Cochran M. A., Puckett C., Moss B. 1985; In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. Journal of Virology 54:30–37
    [Google Scholar]
  3. Coffin J., Haase A., Levy J. A., Montagnier L., Oroszlan S., Teich N., Temin H., Toyoshima K., Varmus H., Vogt P., Weiss R. 1986; Human immunodeficiency viruses. Science 232:697
    [Google Scholar]
  4. Covey S. N. 1986; Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Research 14:623–633
    [Google Scholar]
  5. Debouck C., Gorniak J. G., Strickler J. E., Meek T. D., Metcalf B. W., Rosenberg M. 1987; Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific mutation of the gag precursor. Proceedings of the National Academy of Sciences, U.S.A 84:8903–8906
    [Google Scholar]
  6. Delchambre M., Gheysen D., Thines D., Thiriart C., Jacobs E., Verdin E., Horth M., Burny A., Bex F. 1989; The GAG precursor of simian immunodeficiency virus assembles into viruslike particles. EMBO Journal 8:2653–2660
    [Google Scholar]
  7. Felsenstein K. M., Goff S. P. 1988; Expression of the gag–pol fusion protein of Moloney murine leukemia Virus without gag protein does not induce virion formation or proteolytic processing. Journal of Virology 62:2179–2182
    [Google Scholar]
  8. Gelderblom H. R., Özel M., Hausmann E. H. S., Winkel T., Pauli G., Koch M. A. 1988; Fine structure of human immunodeficiency virus (HIV), immunolocalization of structural proteins and virus-cell relation. Micron and Microscopica 19:41–60
    [Google Scholar]
  9. Gelderblom H. R., Özel M., Pauli G. 1989; Morphogenesis and morphology of HIV structure-function relations, brief review. Archives of Virology 106:1–13
    [Google Scholar]
  10. Gendelman H. E., Theodore T. S., Willey R., McCoy J., Adachi A., Mervis R. J., Venkatesan S., Martin M. A. 1987; Molecular characterization of a polymerase mutant of human immunodeficiency virus. Virology 160:323–329
    [Google Scholar]
  11. Gheysen D., Jacobs E., de Foresta F., Thiriart C., Francotte M., Thines D., De Wilde M. 1989; Assembly and release of HIV-1 precursor Pr55 gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59:103–112
    [Google Scholar]
  12. Gonda M. A., Wong-Staal F., Gallo R. C., Clements J. E., Narayan O., Gilden R. V. 1985; Sequence homology and morphologic similarity of HTLV-III and visna virus, a pathogenic lentivirus. Science 227:173–177
    [Google Scholar]
  13. Göttlinger H. G., Sodroski J. F., Haseltine W. A. 1989; Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, U.S.A 86:5781–5785
    [Google Scholar]
  14. Henderson L. E., Copeland T. D., Sowder R. C., Schultz A. M., Oroszlan S. 1988; Analysis of proteins and peptides purified from sucrose gradient banded HTLV-III. In Human Retroviruses, Cancer, and AIDS: Approaches to Prevention and Therapy pp 135–147 Edited by Bolognesi D. New York: Alan R. Liss;
    [Google Scholar]
  15. Hockley D. J., Wood R. D., Jacobs J. P., Garrett A. J. 1988; Electron microscopy of human immunodeficiency virus. Journal of General Virology 69:2455–2469
    [Google Scholar]
  16. Hoffman A. D., Banapour B., Levy J. A. 1985; Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology 147:326–335
    [Google Scholar]
  17. Jacks T., Varmus H. E. 1987; Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:1237–1242
    [Google Scholar]
  18. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988; Characterization of ribosomal frameshifting in HIV-1 gag–pol expression. Nature, London 331:280–283
    [Google Scholar]
  19. Katoh I., Yoshinaka Y., Rein A., Shibuya M., Odaka T., Oroszlan S. 1985; Murine leukemia virus maturation: protease region required for conversion from (‘immature’) to (‘mature’) core form and for virus infectivity. Virology 145:280–292
    [Google Scholar]
  20. Katsumoto T., Hattori N., Kurimura T. 1987; Maturation of human immunodeficiency virus, strain LAV, in vitro. Intervirology 27:148–153
    [Google Scholar]
  21. Klatzmann D., Barré-Sinoussi F., Nugeyre M. T., Dauguet C., Vilmer E., Griscelli C., Brun-Vezinet F., Rouzioux C., Gluckman J. C., Chermann J.-C., Montagnier L. 1984; Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science 225:59–63
    [Google Scholar]
  22. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, U.S.A 82:488–492
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680685
    [Google Scholar]
  24. Lever A., Göttlinger H., Haseltine W., Sodroski J. 1989; Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. Journal of Virology 63:4085–4087
    [Google Scholar]
  25. Lillehoj E. P., Salazar F. H. R., Mervis R. J., Raum M. G., Chan H. W., Ahmad N., Venkatesan S. 1988; Purification and structural characterization of the putative gag–pol protease of human immunodeficiency virus. Journal of Virology 62:3053–3058
    [Google Scholar]
  26. Mackett M., Smith G. L., Moss B. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: A Practical Approach vol 2 pp 191–212 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  27. Mervis R. J., Ahmad N., Lillehoj E. P., Raum M. G., Salazar F. H. R., Chan H. W., Venkatesan S. 1988; The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of post-translational modifications, and evidence for alternative gag precursors. Journal of Virology 62:3993–4002
    [Google Scholar]
  28. Meyenhofer M. F., Epstein L. G., Cho E.-S., Sharer L. R. 1987; Ultrastructural morphology and intracellular production of human immunodeficiency virus (HIV) in brain. Journal of Neuropathology and Experimental Neurology 46:474–484
    [Google Scholar]
  29. Morita M., Suzuki K., Yasuda A., Kojima A., Sugimoto M., Watanabe K., Kobayashi H., Kajiyama K., Hashizume S. 1987; Recombinant vaccinia virus LC16mO or LC16m8 that expresses hepatitis B surface antigen while preserving the attenuation of the parental virus strain. Vaccine 5:65–70
    [Google Scholar]
  30. Muesing M. A., Smith D. H., Cabradilla C. D., Benton C. V., Lasky L. A., Capon D. J. 1985; Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature, London 313:450–458
    [Google Scholar]
  31. Munn R. J., Marx P. A., Yamamoto J. K., Gardner M. B. 1985; Ultrastructural comparison of the retroviruses associated with human and simian acquired immunodeficiency syndromes. Laboratory Investigation 53:194–199
    [Google Scholar]
  32. Murphy E. C. Jr, Kopchick J. J., Watson K. F., Arlinghaus R. B. 1978; Cell-free synthesis of a precursor polyprotein containing both gag and pol gene products by Rauscher murine leukemia virus 35S RNA. Cell 13:359–369
    [Google Scholar]
  33. Palmer E., Sporborg C., Harrison A., Martin M. L., Feorino P. 1985; Morphology and immunoelectron microscopy of AIDS virus. Archives of Virology 85:189–196
    [Google Scholar]
  34. Peng C., Ho B. K., Chang T. W., Chang N. T. 1989; Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. Journal of Virology 63:2550–2556
    [Google Scholar]
  35. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K., Ivanoff L., Petteway S. R. Jr, Pearson M. L., Lautenberger J. A., Papas T. S., Ghrayeb J., Chang N. T., Gallo R. C., Wong-Staal F. 1985; Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature, London 313:277–284
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd. edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  38. Shields A., Witte O. N., Rothenberg E., Baltimore D. 1978; High frequency of aberrant expression of Moloney murine leukemia virus in clonal infections. Cell 14:601–609
    [Google Scholar]
  39. Smith A. J., Cho M.-I., Hammarskjöld M.-L., Rekosh D. 1990; Human immunodeficiency virus type 1 Pr55gag and Prl60gag-pol expressed from a simian virus 40 late replacement vector are efficiently processed and assembled into viruslike particles. Journal of Virology 64:2743–2750
    [Google Scholar]
  40. Sugimoto M., Yasuda A., Miki K., Morita M., Suzuki K., Uchida N., Hashizume S. 1985; Gene structures of low-neurovirulent vaccinia virus LC16m0, LC16m8, and their Lister original (LO) strains. Microbiology and Immunology 29:421–428
    [Google Scholar]
  41. Voynow S. L., Coffin J. M. 1985; Truncated gag– related proteins are produced by large deletion mutants of Rous sarcoma virus and form virus particles. Journal of Virology 55:79–85
    [Google Scholar]
  42. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. 1985; Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17
    [Google Scholar]
  43. Watanabe K., Kobayashi H., Kajiyama K., Morita M., Yasuda A., Gotoh H., Saeki S., Sugimoto H., Kojima A. 1989; Improved recombinant LCI6m0 or LCI6m8 vaccinia virus successfully expressing hepatitis B surface antigen. Vaccine 7:53–59
    [Google Scholar]
  44. Yasuda A., Kimura-Kuroda J., Ogimoto M., Sata T., Sato T., Takamura C., Kurata T., Kojima A., Yasui K. 1990; Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express preM and E glycoproteins of Japanese encephalitis virus. Journal of Virology 64:2788–2790
    [Google Scholar]
  45. Yoshinaka Y., Luftig R. B. 1977; Murine leukemia virus morphogenesis: cleavage of P70 in vitro can be accompanied by a shift from a concentrically coiled internal strand (‘immature’) to a collapsed (‘mature’) form of the virus core. Proceedings of the National Academy of Sciences, U.S.A 743446–3450
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-72-10-2509
Loading
/content/journal/jgv/10.1099/0022-1317-72-10-2509
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error