1887

Abstract

The degradation of herpes simplex virus particles after uptake by phagocytes was studied, but, since lysis of the phagocyte also resulted in damage to the viral envelope, measurement of viral infectivity as a criterion of viral degradation after phagocytosis was not possible. Therefore we focused on later events in viral destruction, namely the degradation of macromolecules. We have demonstrated that polymorphonuclear leukocytes (PMN) and monocytes (MN) can rapidly degrade the membrane proteins of the phagocytosed herpesvirus virions. PMN and MN from a patient with chronic granulomatous disease showed a similar rate of degradation compared to PMN and MN from healthy donors, which excludes an important role for toxic oxygen species in viral protein degradation. Experiments using toxic oxygen species-generating systems supported this observation. In contrast to PMN, MN are also effective in the digestion of viral DNA. We conclude that PMN and MN are able to neutralize large amounts of phagocytosed HSV, so their role in antiviral defence has again been demonstrated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-5-1205
1990-05-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/5/JV0710051205.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-5-1205&mimeType=html&fmt=ahah

References

  1. Babior B. M. 1984; Oxidants from phagocytes: agents of defence and destruction. Blood 5:959–966
    [Google Scholar]
  2. Bainton D. F., Ullyot J. L., Farquhar M. G. 1971; The development of neutrophilic, polymorphonuclear leucocytes in human bone marrow. Origin and content of azurophilic and specific granules. Journal of Experimental Medicine 134:907–934
    [Google Scholar]
  3. Belding M. E., Klebanoff S. J., Ray C. G. 1970; Peroxidase mediated virucidal systems. Science 167:195–196
    [Google Scholar]
  4. Bingham E. L., Fenger T. W., Sugar A., Smith J. W. 1985; Dependence on antibody for induction of chemiluminescence in polymorphonuclear leukocytes by herpes simplex virus. Investigative Ophthalmology and Visual Sciences 26:1236–1243
    [Google Scholar]
  5. Bordier C. 1981; Phase separation of integral membrane proteins in Triton X-114 solution. Journal of Biological Chemistry 256:1604–1607
    [Google Scholar]
  6. Cassai E. N., Sarmiento M., Spear P. 1975; Comparison of the virion proteins specified by herpes simplex virus types 1 and 2. Journal of Virology 16:1327–1331
    [Google Scholar]
  7. Chanas A. C., Gould E. A., Clegg J. C. S., Varma M. G. R. 1982; Monoclonal antibodies to Sindbis virus glycoprotein El can neutralize, enhance infectivity, and independently inhibit haemagg-lutination or haemolysis. Journal of General Virology 58:37–46
    [Google Scholar]
  8. Cleaver J. E., Boyer H. W. 1972; Solubility and dialysis limits of DNA oligonucleotides. Biochimica et biophysica acta 262:116–124
    [Google Scholar]
  9. Clerx J. P. M., Horzinek M. C., Osterhaus A. D. M. E. 1978; Neutralization and enhancement of infectivity of non-salmonid fish rhabdoviruses by rabbit and pike immune sera. Journal of General Virology 40:297–308
    [Google Scholar]
  10. Cline M. J. 1966; Phagocytosis and synthesis of ribonucleic acid in human granulocytes. Nature; London: 2121431–1433
    [Google Scholar]
  11. Daher K. A., Selsted M. E., Lehrer R. I. 1986; Direct inactivation of viruses by human granulocyte defensins. Journal of Virology 60:1068–1074
    [Google Scholar]
  12. Fujisawa H., Tsuru S., Taniguchi M., Zinnaka Y., Nomoto K. 1987; Protective mechanisms against pulmonary infection with influenza virus. I. Relative contribution of polymorphonuclear leukocytes and of alveolar macrophages to protection during the early phase of intranasal infection. Journal of General Virology 68:425–432
    [Google Scholar]
  13. Halstead S. B. 1988; Pathogenesis of dengue: challenges to molecular biology. Science 239:476–481
    [Google Scholar]
  14. Inada T., Mims C. A. 1985; Ia antigens and Fc receptors of mouse peritoneal macrophages as determinants of susceptibility to lactic dehydrogenase virus. Journal of General Virology 66:1469–1477
    [Google Scholar]
  15. Jack R. M., Fearon D. T. 1988; Selective synthesis of mRNA and proteins by human peripheral blood neutrophils. Journal of Immunology 140:4286–4293
    [Google Scholar]
  16. Johnson D. C., Wittels M., Spear P. G. 1984; Binding of cells of virosomes containing herpes simplex virus type 1 glycoproteins and evidence for fusion. Journal of Virology 52:238–247
    [Google Scholar]
  17. King A. A., Sands J. J., Porterfield J. S. 1984; Antibody-mediated enhancement of rabies virus infection in a mouse macrophage cell line (P388D1). Journal of General Virology 65:1091–1093
    [Google Scholar]
  18. Lamers M. C., De Groot E. R., Roos D. 1981; Phagocytosis and degradation of DNA-anti-DNA complexes by human phagocytes I.Assay conditions, quantitative aspects and differences between human blood monocytes and neutrophils. European Journal of Immunology 11:757–764
    [Google Scholar]
  19. McCullough K. C., Parkinson D., Crowther J. R. 1988; Opsonization-enhanced phagocytosis of foot-and-mouth disease virus. Immunology 65:187–191
    [Google Scholar]
  20. Peiris J. S. M., Gordon S., Unkeless J. C., Porterfield J. S. 1981; Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages. Nature; London: 289189–191
    [Google Scholar]
  21. Pryde J. G. 1986; Triton X-114: a detergent that has come in from the cold. Trends in Biological Sciences 11:160–163
    [Google Scholar]
  22. Rouse B. T., Babuik L. A., Henson P. M. 1980; Neutrophils in antiviral immunity: inhibition of virus replication by a mediator produced by bovine neutrophils. Journal of Infectious Diseases 141:223–232
    [Google Scholar]
  23. Rozenberg-Arska M. R., Van Strijp J. A. G., Hoekstra W. P. M., Verhoef J. 1984; Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli . Journal of Clinical Investigation 73:1254–1262
    [Google Scholar]
  24. Schlesinger J. J., Brandriss M. W. 1981; Growth of 17D yellow fever virus in a macrophage-like cell line, U937: role ofFc and viral receptors in antibody-mediated infection. Journal of Immunology 127:659–665
    [Google Scholar]
  25. Selsted M. E., Harwig S. S. L. 1987; Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infection and Immunity 55:2281–2286
    [Google Scholar]
  26. Smith J. W., Jachimowicz J. R., Bingham E. L. 1986; Binding and internalization of herpes simplex virus-antibody complexes by polymorphonuclear leukocytes. Journal of Medical Virology 20:151–163
    [Google Scholar]
  27. Spitznagel J. K. 1984; Nonoxidative antimicrobial reactions of leukocytes. Contemporary Topics in Immunobiology 14:283–343
    [Google Scholar]
  28. Takeda A., Tuazon C. U., Ennis F. A. 1988; Antibody-enhanced infectin by HIV-1 via Fc receptor-mediated entry. Science 242:580–583
    [Google Scholar]
  29. Thorne K. J. I., Norman J. M., Haydock S. F., Lammas D. A., Duffus P. H. 1984; Antibody-dependent cell-mediated cytotoxicity against IBR-infected bovine kidney cells by ruminant neutrophils: the role of lysosomal cationic protein. Immunology 53:275–282
    [Google Scholar]
  30. Traavik T., Uhlin-Hansen L., Flægstad T., Christie K. E. 1988; Antibody-mediated enhancement of BK virus infection in human monocytes and a human macrophage-like cell line. Journal of Medical Virology 24:283–297
    [Google Scholar]
  31. Van Strijp J. A. G., Van Kessel K. P. M., Van Der Tol M. E., Verhoef J. 1989a; Phagocytosis of herpes simplex virions by human granulocytes and monocytes. Archives of Virology 104:2872–98
    [Google Scholar]
  32. Van Strijp J. A. G., Van Kessel K. P. M., Van Der Tol M. E., Verhoef J. 1989b; Complement-mediated phagocytosis of herpes simplex virus by granulocytes: binding or ingestion. Journal of Clinical Investigation 84:107–112
    [Google Scholar]
  33. Weber L., Peterhans E. 1983; Stimulation of chemiluminescence in bovine polymorphonuclear leukocytes by virus-antibody complexes and by antibody coated infected cells. Immunobiology 164:333–342
    [Google Scholar]
  34. West B. C., Eschete M. L., Cox M. E., King J. W. 1987; Neutrophil uptake of vaccinia virus in vitro . Journal of Infectious Diseases 156:597–606
    [Google Scholar]
  35. Zerial A., Skerlavaj B., Gennaro R., Romeo D. 1987; Inactivation of herpes simplex virus by protein components of bovine neutrophil granules. Antiviral Research 7:341–352
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-5-1205
Loading
/content/journal/jgv/10.1099/0022-1317-71-5-1205
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error