1887

Abstract

The nucleotide sequence of the S peplomer gene of bovine coronavirus (BCV) has been determined. A single open reading frame of 4089 nucleotides encodes a polypeptide of 150K with 20 potential sites for addition of -linked oligosaccharides. Expression of the cloned BCV S gene by a recombinant of nuclear polyhedrosis virus resulted in production of a 180K glycosylated polypeptide which was transported to the surface of the cell. Comparison of the BCV S gene with the analogous genes of murine hepatitis viruses shows that the BCV S polypeptide contains a unique domain of 138 amino acids not present in murine hepatitis virus strain JHM, but which has a partially homologous counterpart in strain A59. This domain accounts for most of the differences in size of the S gene products of these coronaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-2-263
1990-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/2/JV0710020263.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-2-263&mimeType=html&fmt=ahah

References

  1. Binns M. M., Boursnell M. E. G., Cavanagh D., Pappin D. J. C., Brown T. D. K. 1985; Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  2. Butters T. C., Hughes R. C. 1981; Isolation and characterization of mosquito cell membrane glycoproteins. Biochimica et biophysica acta 640:655–671
    [Google Scholar]
  3. Callebaut P. E., Pensaert M. B. 1980; Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. Journal of General Virology 48:193–204
    [Google Scholar]
  4. Cavanagh D., Davis P. J. 1986; Coronavirus IBV: removal of spike glycopolypeptide SI by urea abolishes infectivity and haemagglutination but not attachment to cells. Journal of General Virology 67:1443–1448
    [Google Scholar]
  5. Cavanagh D., Davis P. J., Darbyshire J. H., Peters R. W. 1986a; Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not SI is unable to induce virus neutralization or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. Journal of General Virology 67:1435–1442
    [Google Scholar]
  6. Cavanagh D., Davis P. J., Pappin D. J. C., Binns M. M., Boursnell M. E. G., Brown T. D. K. 1986b; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Research 4:133–143
    [Google Scholar]
  7. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. 1982; Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 119:358–371
    [Google Scholar]
  8. Dalziel R. G., Lambert P. W., Talbot P. J., Buchmeier M. J. 1986; Site specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. Journal of Virology 59:463–471
    [Google Scholar]
  9. Dea S., Roy R. S., Begin M. E. 1980; Bovine coronavirus: isolation and cultivation in continuous cell lines. American Journal of Veterinary Research 41:30–38
    [Google Scholar]
  10. Deregt D., Babiuk L. A. 1987; Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161:410–420
    [Google Scholar]
  11. Deregt D., Sabara M., Babiuk L. A. 1987; Structural proteins of bovine coronavirus and their intracellular processing. Journal of General Virology 68:2863–2877
    [Google Scholar]
  12. Deregt D., Parker M. D., Cox G. C., Babiuk L. A. 1989; Mapping of neutralizing epitopes to fragments of the bovine coronavirus E2 protein by proteolysis of antigen-antibody complexes. Journal of General Virology 70:647–658
    [Google Scholar]
  13. Fleming J. O., Shubin R. A., Sussman M. A., Casteel N., Stohlman S. A. 1989; Monoclonal antibodies to the matrix (El) glycoprotein of mouse hepatitis virus protect mice from encephalitis. Virology 168:162–167
    [Google Scholar]
  14. Frana M. F., Behnke J. N., Sturman L. A., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: host-dependent differences in proteolytic cleavage and cell fusion. Journal of Virology 56:912–920
    [Google Scholar]
  15. Gething M. J., White J. M., Waterfield M. D. 1978; Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation. Proceedings of the National Academy of Sciences, U.S.A 75:2737–2740
    [Google Scholar]
  16. Grunstein M., Hogness D. 1975; Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences, U.S.A 72:3961–3965
    [Google Scholar]
  17. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  18. Hogue B. G., Brian D. A. 1986; Structural proteins of human respiratory coronavirus OC43. Virus Research 5:131–144
    [Google Scholar]
  19. Hogue B. G., King B., Brian D. A. 1984; Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59. Journal of Virology 51:384–388
    [Google Scholar]
  20. King B., Brian D. A. 1982; Bovine coronavirus structural proteins. Journal of Virology 42:700–707
    [Google Scholar]
  21. King B., Potts B. J., Brian D. A. 1985; Bovine coronavirus hemagglutinin protein. Virus Research 2:53–59
    [Google Scholar]
  22. Kozak M. 1987; Point mutations define a sequence flanking the AUG initiation codon that moderate translation by eucaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  24. Lapps W., Hogue B. G., Brian D. A. 1987; Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology 157:47–57
    [Google Scholar]
  25. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., VanderZeijst B. A. A., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  26. Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. 1989; Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. Journal of Virology 63:1408–1412
    [Google Scholar]
  27. Macnaughton M. R., Davies H. A., Nermut M. V. 1978; Ribonucleoprotein-like structures from coronavirus particles. Journal of General Virology 39:545–549
    [Google Scholar]
  28. Makino S., Fleming J. O., Keck J. G., Stohlman S. A., Lai M. M. C. 1987; RNA recombination of coronaviruses: localization of neutralization epitopes and neuropathogenic determinants on the carboxyl-terminus of peplomers. Proceedings of the National Academy of Sciences, U.S.A 84:6567–6571
    [Google Scholar]
  29. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. L. 1987; Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. Journal of General Virology 68:1233–1250
    [Google Scholar]
  30. Mebus C. A. 1978; Pathogenesis of coronaviral infection in calves. Journal of the American Veterinary Medical Association 173:631–632
    [Google Scholar]
  31. Mockett A. P. A., Cavanagh D., Brown T. D. K. 1984; Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41. Journal of General Virology 65:2281–2286
    [Google Scholar]
  32. Parker M. D., Cox G. J., Deregt D., Fitzpatrick D. R., Babiuk L. A. 1989; Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. Journal of General Virology 70:155–164
    [Google Scholar]
  33. Ricard C. S., Sturman L. S. 1985; Isolation of the subunits of the coronavirus glycoprotein E2 by hydroxyapatite high-performance liquid chromatography. Journal of Chromatography 326:191–197
    [Google Scholar]
  34. Richardson C. D., Scheid A., Choppin P. W. 1980; Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the FI or HA2 viral polypeptides. Virology 105:205–222
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  36. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  37. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  38. Summers M. D., Smith G. E. 1987 A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures Texas Agricultural Experiment Station Bulletin 1555
    [Google Scholar]
  39. Tomley F. M., Mockett A. P. A., Boursnell M. E. G., Binns M. M., Cook J. K. A., Brown T. D. K., Smith G. L. 1987; Expression of the infectious bronchitis virus spike protein by recombinant vaccinia virus and induction of neutralizing antibodies in vaccinated mice. Journal of General Virology 68:2291–2298
    [Google Scholar]
  40. Tooze J., Tooze S., Warren G. 1984; Replication of coronavirus MHV-A59 in sac-cells: determination of the first site of budding of progeny virions. European Journal of Cell Biology 33:281–293
    [Google Scholar]
  41. Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. 1988a; The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. Journal of Virology 62:4686–4690
    [Google Scholar]
  42. Vlasak R., Luytjes W., Spaan W., Palese P. 1988b; Human and bovine coronaviruses recognize sialic-acid containing receptors similar to those of influenza C viruses. Proceedings of the National Academy of Sciences, U.S.A 85:4526–4529
    [Google Scholar]
  43. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  44. Wege H., Winter J., Meyermann R. 1988; The peplomer protein E2 of coronavirus JHM as a determinant of neurovirulence: definition of critical epitopes by variant analysis. Journal of General Virology 69:87–98
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-2-263
Loading
/content/journal/jgv/10.1099/0022-1317-71-2-263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error