1887

Abstract

Primary bovine fibroblasts derived from foetal palate can be transformed by bovine papillomavirus type 4 DNA only in the presence of an activated gene, indicating that the virus does not encode all the information required for morphological transformation of non-established cells. A subgenomic fragment containing the complete E8 and E7 open reading frames (ORFs) induces transformation in cooperation with activated but transformation is abolished when the E7 ORF is deleted at the 3’ end, showing that this ORF encodes a necessary transforming function. Transformation is more aggressive when the E8 and E7 ORFs are placed under the transcriptional control of the long terminal repeat of the mouse Moloney leukaemia virus, suggesting that the degree of transformation is dependent on the level of expression of these genes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-12-3041
1990-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/12/JV0710123041.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-12-3041&mimeType=html&fmt=ahah

References

  1. Barbosa M. S., Lowy D. R., Schiller J. T. 1989; Papillomavirus polypeptides E6 AND E7 are zinc-binding proteins. Journal of Virology 63:1404–1407
    [Google Scholar]
  2. Barbosa M. S., Edmonds C., Fisher C., Schiller J. T., Lowy D. R., Vousden K. H. 1990; The region of the HPV E7 oncoprotein homologous to adenovirus Ela and SV40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. EMBO Journal 9:153–160
    [Google Scholar]
  3. Burnett S., Kiessling U., Petterson U. 1989; Loss of bovine papillomavirus DNA replication control in growth-arrested transformed cells. Journal of Virology 63:2215–2225
    [Google Scholar]
  4. Campo M. S., Coggins L. W. 1982; Molecular cloning of bovine papillomavirus genomes and comparison of their sequence homologies by heteroduplex mapping. Journal of General Virology 63:255–264
    [Google Scholar]
  5. Campo M. S., Jarrett W. F. H. 1987; Papillomaviruses and disease. In Molecular Basis of Virus Disease pp. 215–243 Russell W. C., Almond J. W. Edited by Cambridge: Cambridge University Press;
    [Google Scholar]
  6. Campo M. S., Spandidos D. A. 1983; Molecularly cloned bovine papillomavirus DNA transforms mouse fibroblasts in vitro. Journal of General Virology 64:549–557
    [Google Scholar]
  7. Campo M. S., Moar M. H., Jarrett W. F. H., Laird H. M. 1980; A new papillomavirus associated with alimentary cancer in cattle. Nature; London: 286180–182
    [Google Scholar]
  8. Campo M. S., Moar M. H., Sartirana M. L., Kennedy I. M., Jarrett W. F. H. 1985; The presence of bovine papillomavirus type 4 DNA is not required for the progression to or the maintenance of the malignant state in cancers of the alimentary canal in cattle. EMBO Journal 4:1819–1825
    [Google Scholar]
  9. Campo M. S., Mccaffery R. E., Doherty I., Kennedy I. M., Jarrett W. F. H. 1990; The Harvey ras 1 gene is activated in papillomavirus-associated carcinomas of the upper alimentary canal in cattle. Oncogene 5:303–308
    [Google Scholar]
  10. Cepko C. L., Roberts B. E., Mulligan R. C. 1984; Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37:1053–1062
    [Google Scholar]
  11. Dotto G. P., Weinberg R. A., Ariza A. 1988; Malignant transformation of mouse primary keratinocytes by Harvey sarcoma virus and its modulation by surrounding normal cells. Proceedings of the National Academy of Sciences U.S.A 85:6389–6393
    [Google Scholar]
  12. Dyson N., Howley P. M., Munger K., Harlow E. 1989; The human papillomavirus 16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–936
    [Google Scholar]
  13. Jarrett W. F. H. 1985; The natural history of bovine papillomavirus infections. In Advances in Viral Oncology 5 pp. 83–102 Klein G. Edited by New York: Raven Press;
    [Google Scholar]
  14. Jarrett W. F. H., Murphy J., O’Neil B. W., Laird H. M. 1978a; Virus induced papillomas of the alimentary tract of cattle. International Journal of Cancer 22:323–328
    [Google Scholar]
  15. Jarrett W. F. H., Mcneil P. E., Grimshaw T. R., Selman I. E., Mcintyre W. I. M. 1978b; High incidence area of cattle cancer with a possible interaction between an environmental carcinogen and a papillomavirus. Nature; London: 274215–217
    [Google Scholar]
  16. Jarrett W. F. H., Watt B., Leighton E., O’Neil B. W., Campo M. S., Laird H. M. 1990; Bovine papillomavirus-2 possesses the necessary genetic information to rapidly transform primary bovine cells to oncogenicity. Research in Veterinary Science in press
    [Google Scholar]
  17. Land H., Parada L. F., Weinberg R. A. 1983; Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating genes. Nature; London: 304596–602
    [Google Scholar]
  18. Lees E., Osborn K., Banks L., Crawford L. 1990; Transformation of primary BRK cells by human papillomavirus type 16 and EJ-ras is increased by overexpression of the viral E2 protein. Journal of General Virology 71:183–193
    [Google Scholar]
  19. Matlashewski G., Schneider J., Banks L., Jones N., Murray A., Crawford L. 1987; Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO Journal 6:1741–1746
    [Google Scholar]
  20. Matlashewski G., Osborn K., Banks L., Stanley M., Crawford L. 1988; Transformation of primary human fibroblast cells with human papillomavirus type 16 DNA and EJ-ras. International Journal of Cancer 42:232–238
    [Google Scholar]
  21. Patel K. R., Smith K. T., Campo M. S. 1987; The nucleotide sequence and genome organization of bovine papillomavirus type 4. Journal of General Virology 68:2117–2128
    [Google Scholar]
  22. Santos E., Tronick S. R., Aaronson S. A., Pulciani S., Barbacid M. 1982; T24 human bladder oncogene is an activated form of the normal homologue of BALB- and Harvey-MSV transforming genes. Nature; London: 298343–347
    [Google Scholar]
  23. Smith K. T., Campo M. S. 1988; “Hit and run” transformation of mouse C127 cells by bovine papillomavirus type 4: the viral DNA is required for the initiation but not for the maintenance of the transformed phenotype. Virology 164:39–47
    [Google Scholar]
  24. Smith K. T., Campo M. S. 1989; Amplification of specific DNA sequences in Cl 27 mouse cells transformed by bovine papillomavirus type 4. Oncogene 4:409–413
    [Google Scholar]
  25. Smotkin D., Wettstein F. O. 1987; The major human papillomavirus protein in cervical cancer is a cytoplasmic phospho-protein. Journal of Virology 61:1686–1689
    [Google Scholar]
  26. Southern P., Berg P. 1982; Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. Journal of Molecular and Applied Genetics 1:327–341
    [Google Scholar]
  27. Stamps A. C., Campo M. S. 1988; Mapping of two novel transcripts of bovine papillomavirus type 4. Journal of General Virology 69:3033–3045
    [Google Scholar]
  28. Storey A., Almond N., Osborn K., Crawford L. 1990; Mutations of the human papillomavirus type 16 E7 gene that affect transformation, transactivation and phosphorylation by the E7 protein. Journal of General Virology 71:965–970
    [Google Scholar]
  29. Watanabe S., Kanda T., Sato H., Furuno A., Yoshiike K. 1990; Mutational analysis of human papillomavirus type 16 E7 functions. Journal of Virology 64:207–214
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-12-3041
Loading
/content/journal/jgv/10.1099/0022-1317-71-12-3041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error