1887

Abstract

The DNA sequence of the fowlpox virus genome corresponding to the vaccinia virus D6 to A1 region has been determined. Translation of this sequence reveals fowlpoxvirus gene homologues corresponding to the D6, D7, D9, DIO, Dll, D12, D13 and A1 genes of vaccinia virus. In contrast, no gene homologue for the non-essential vaccinia virus D8 gene was present in fowlpox virus. Instead, a gene transcribed from the opposite strand to the vaccinia virus D8 gene showing no homology to any previously sequenced poxvirus gene was present. The amino terminus of the fowlpox virus D9 homologue had undergone substantial changes, including frameshifts which would be predicted to inactivate the gene. Insertion of a gene cartridge composed of the vaccinia virus p7 · 5 promoter and the gene into the fowlpox virus D8, D9 and DIO genes followed by recombination into fowlpox virus, was carried out. Stable insertion mutants with the correct genotype were obtained for D8 and D9 which, when tested in chickens did not appear to have been attenuated. No stable insertion mutants were obtained for DIO, indicating that this gene probably encodes a function which is essential for virus replication. The D8 and D9 genes of fowlpox virus represent useful insertion sites for the construction of recombinant fowlpox virus vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-12-2873
1990-12-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/12/JV0710122873.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-12-2873&mimeType=html&fmt=ahah

References

  1. Baldick J. C.Jr Moss B. 1987; Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62,000 polypeptide. Virology 156:138–145
    [Google Scholar]
  2. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35 S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences U.S.A: 803963–3965
    [Google Scholar]
  3. Binns M. M., Stenzler L., Tomley F. M., Campbell J., Boursnell M. E. G. 1987; Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparison with other viral DNA polymerases. Nucleic Acids Research 15:6563–6573
    [Google Scholar]
  4. Binns M. M., Tomley F. M., Campbell J., Boursnell M. E. G. 1988; Comparison of a conserved region in fowlpox virus and vaccinia virus genomes and the translocation of the fowlpox virus thymidine kinase gene. Journal of General Virology 69:1275–1283
    [Google Scholar]
  5. Binns M. M., Boursnell M. E. G., Tomley F. M., Campbell J. 1989; Analysis of the fowlpoxvirus gene encoding the 4b core polypeptide and demonstration that it possesses efficient promoter sequences. Virology 170:288–291
    [Google Scholar]
  6. Broyles S. S., Moss B. 1987; Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA- dependant ATPase. Journal of Virology 61:1738–1742
    [Google Scholar]
  7. Buller R. M. L., Smith G. L., Cremer K., Notkins A. L., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature; London: 317813–815
    [Google Scholar]
  8. Buller R. M. L., Chakrabarti S., Cooper J. A., Twardzik D. R., Moss B. 1988; Deletion of vaccinia virus growth factor gene reduces virus virulence. Journal of Virology 62:866–874
    [Google Scholar]
  9. Campbell J. I. A., Binns M. M., Tomley F. M., Boursnell M. E. G. 1989; Tandem repeated sequences within the terminal region of the fowlpox virus genome. Journal of General Virology 70:145–154
    [Google Scholar]
  10. Deininger P. L. 1983; Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analytical Biochemistry 129:216–223
    [Google Scholar]
  11. Drillien R., Spehner D., Villeval D., Lecocq J. P. 1987; Similar genetic organization between a region of fowlpoxvirus DNA and the vaccinia virus HINALLL J fragment despite divergent location of the thymidine kinase gene. Virology 160:203–209
    [Google Scholar]
  12. Farrell P. J., Deininger P. L., Bankier A., Barrell B. 1983; Homologous upstream sequence near Epstein-Barr virus promoters. Proceedings of the National Academy of Sciences U.S.A.: 801565–1569
    [Google Scholar]
  13. Grunstein M., Hogness D. 1975; Colony hybridization: a method for the isolation of cloned DN As that contain a specific gene. Proceedings of the National Academy of Sciences U.S.A.: 723961–3965
    [Google Scholar]
  14. Hanahan D. 1983; Studies on the transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  15. Hanggi M., Bannwarth W., Stunnenberg H. G. 1986; Conserved TAAAT motif in vaccinia virus late promoters: overlapping TATA box and site of transcription initiation. EMBO Journal 5:1071–1076
    [Google Scholar]
  16. Howard S. T., Smith G. L. 1989; Two early vaccinia virus genes encode polypeptides related to protein kinases. Journal of General Virology 70:3187–3201
    [Google Scholar]
  17. Jones E. V., Puckett C., Moss B. 1987; DNA-dependent RNA polymerase subunits encoded within the vaccinia virus genome. Journal of Virology 61:1765–1771
    [Google Scholar]
  18. Kotwal G. J., Moss B. 1988; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature; London: 335176–178
    [Google Scholar]
  19. Lee-Chen G. J., Niles E. G. 1988a; Transcription and translation map of the thirteen genes in the vaccinia virus HindIII D fragment. Virology 163:52–63
    [Google Scholar]
  20. Lee-Chen G. J., Niles E. G. 1988b; Map positions of the 5′ ends of eight mRNAs synthesised from the late genes in the vaccinia virus HindIII D fragment. Virology 163:80–92
    [Google Scholar]
  21. Lee-Chen G. J., Bourgeois N., Davidson K., Condit R. C., Niles E. G. 1988; Structure of the transcription initiation and termination sequences of eight early genes from the vaccinia virus Hind 111 D fragment. Virology 163:64–79
    [Google Scholar]
  22. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  23. Miner J. N., Hruby D. E. 1989; DNA sequences that regulate expression of a vaccinia virus late gene (L65) and interact with a DNA-binding protein from infected cells. Journal of Virology 63:2726–2736
    [Google Scholar]
  24. Miner J. N., Weinrich S. L., Hruby D. E. 1988; Molecular dissection of as-acting regulatory elements from 5′-proximal regions of a vaccinia virus late gene cluster. Journal of Virology 62:297–304
    [Google Scholar]
  25. Niles E. G., Seto J. 1988; Vaccinia virus gene D8 encodes a virion transmembrane protein. Journal of Virology 62:3772–3778
    [Google Scholar]
  26. Niles E. G., Condit R. C., Caro P., Davidson K., Matusick L., Seto J. 1986; Nucleotide sequence and genetic map of the 16 kb vaccinia virus HindIII D fragment. Virology 153:96–112
    [Google Scholar]
  27. Niles E. G., Lee-Chen G., Shuman S., Moss B., Broyles S. S. 1989; Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. Virology 112:513–522
    [Google Scholar]
  28. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. 1986; Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proceedings of the National Academy of Sciences U.S.A.: 837698–7702
    [Google Scholar]
  29. Pohlner J., Halter R., Beyreuther K., Meyer T. F. 1987; Gene structure and extracellular secretion of Neisseria Gonorrhoea IGA. Nature; London: 325458–462
    [Google Scholar]
  30. Rodgriguez J. F., Kahn J. S., Esteban M. 1986; Molecular cloning, encoding sequence and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene. Proceedings of the National Academy of Sciences U.S.A.: 839566–9570
    [Google Scholar]
  31. Seto J., Celenza L. M., Condit R. C., Niles E. G. 1987; Genetic map of the vaccinia virus HindIII D fragment. Virology 160:110–119
    [Google Scholar]
  32. Slabaugh M. B., Roseman N. A. 1989; Retroviral protease-like gene in the vaccinia virus genome. Proceedings of the National Academy of Sciences U.S.A.: 864152–4155
    [Google Scholar]
  33. Smith G. L., Chan Y. S., Kerr S. M. 1989; Transcriptional mapping and nucleotide sequence of a vaccinia gene encoding a polypeptide with extensive homology to DNA ligases. Nucleic Acids Research 17:9051–9062
    [Google Scholar]
  34. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  35. Staden R. 1984; Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Research 12:521–538
    [Google Scholar]
  36. Tartaglia J., Paoletti E. 1985; Physical mapping and DNA sequence analysis of the rifampicin-resistance locus in vaccinia virus. Virology 147:394–404
    [Google Scholar]
  37. Tartaglia J., Piccini A., Paoletti E. 1986; Vaccinia virus rifampicin-resistance locus specifies a late 63,000 Da gene product. Virology 150:45–54
    [Google Scholar]
  38. Tomley F. M., Binns M. M., Campbell J., Boursnell M. E. G. 1988; Sequence analysis of an 11-2 kilobase, near-terminal, BamHI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  39. Weinrich S. L., Hruby D. E. 1986; A tandemly-orientated late gene cluster within the vaccinia virus genome. Nucleic Acids Research 14:3003–3016
    [Google Scholar]
  40. Yuen L., Moss B. 1987; Oligonucleotide sequence signalling transcriptional termination of vaccinia virus early genes. Proceedings of the National Academy of Sciences U.S.A.: 846417–6421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-12-2873
Loading
/content/journal/jgv/10.1099/0022-1317-71-12-2873
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error