1887

Abstract

The herpes simplex virus type 1 temperature-sensitive (ts) DNA-positive mutant 1203 has been characterized. The ts lesion in 1203 was located by marker rescue within the coding region of gene UL28. Nuclei of cells infected with 1203 at the non-permissive temperature (NPT) contained large numbers of capsids with a uniform morphology. These capsids lacked DNA but had a defined internal structure. No full capsids were detected at the NPT, suggesting that 1203 was unable to package viral DNA. In this respect 1203 is similar to 1201 which has a defect in gene UL26. The capsids made by 1203 at the NPT, however, contained a more compact internal structure than those of 1201. In addition, 1203 capsids were dispersed throughout the nucleus whereas 1201 capsids were frequently found clustered together in large arrays. Southern blot and sedimentation analyses of viral DNA confirmed that 1203 had an encapsida- tion defect and showed that most of the mutant DNA at the NPT was of a high The effect of the 1203 mutation could not be reversed in the absence of protein synthesis by transferring mutant-infected cells from the NPT to the permissive temperature.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-10-2377
1990-10-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/10/JV0710102377.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-10-2377&mimeType=html&fmt=ahah

References

  1. Addison C., Rixon F. J., Palfreyman J. W., O’Hara M., Preston V. 1984; Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology 138:246–259
    [Google Scholar]
  2. Atkinson M. A., Barr S., Timbury M. C. 1978; The fine structure of cells infected with temperature-sensitive mutants of herpes simplex vims type 2. Journal of General Virology 40:103–119
    [Google Scholar]
  3. Botchan M., Topp W., Sambrook J. 1976; The arrangement of simian virus 40 sequences in the DNA of transformed cells. Cell 9:269–287
    [Google Scholar]
  4. Braun D. K., Roizman B., Pereira L. 1984; Characterisation of post translation products of herpes simplex virus gene 35 proteins binding to the surface of full capsids but not empty capsids. Journal of Virology 49:142–153
    [Google Scholar]
  5. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  6. Cohen G. H., Ponce De Leon M., Diggleman H., Lawrence W. C., Vernon S. K., Eisenberg R. G. 1980; Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. Journal of Virology 34:521–531
    [Google Scholar]
  7. Deiss P. L., Frenkel N. 1986; Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. Journal of Virology 57:933–941
    [Google Scholar]
  8. Dixon R. A. F., Sabourin D. J., Schaffer P. A. 1983; Genetic analysis of temperature-sensitive mutants which define the genes for the major herpes simplex virus type 2 DNA-binding protein and a new late function. Journal of Virology 45:343–353
    [Google Scholar]
  9. Friedmann A., Coward J. E., Rosenkranz H. S., Morgan C. 1975; Electron microscopic studies on assembly of herpes simplex virus upon removal of hydroxyurea block. Journal of General Virology 26:171–181
    [Google Scholar]
  10. Furlong D. H., Swift H., Roizman B. 1972; Arrangement of herpesvirus deoxyribonucleic acid in the core. Journal of Virology 10:1071–1074
    [Google Scholar]
  11. Gibson W., Roizman B. 1972; Proteins specified by herpes simplex virus. VIII. Characterization and composition of multiple capsid forms of subtypes 1 and 2. Journal of Virology 10:1044–1052
    [Google Scholar]
  12. Glorioso J. C., Levine M., Holland T. C., Szczesiul M. S. 1980; Mutant analysis of herpes simplex virus-induced cell surface antigens: resistance to complement-mediated immune cytolysis. Journal of Virology 35:672–681
    [Google Scholar]
  13. Heilman C. J., Zweig M., Stephenson J. R., Hampar B. 1979; Isolation of a nucleocapsid polypeptide of herpes simplex virus possessing immunological type-specific and cross-reactive determinants. Journal of Virology 29:34–42
    [Google Scholar]
  14. Holland L. E., Sandri-Goldin R. M., Goldin A. L., Glorioso J. C., Levine M. 1984; Transcriptional and genetic analyses of the herpes simplex virus type 1 genome: coordinates 0·29 to 0·45. Journal of Virology 49:947–959
    [Google Scholar]
  15. Hughes R. G. Jr Munyon W. H. 1975; Temperature-sensitive mutants of herpes simplex virus type 1 defective in lysis but not in transformation. Journal of Virology 16:275–283
    [Google Scholar]
  16. Jacob R. J., Morse L. S., Roizman B. 1979; Anatomy of herpes simplex virus DNA. XII. Accumulation of head-to-tail concatemers in nuclei of infected cells and their role in the generation of four isomeric arrangements of viral DNA. Journal of Virology 29:448–457
    [Google Scholar]
  17. Jeffreys A. J., Flavell R. A. 1977; A physical map of the DNA regions flanking the rabbit β-globin gene. Cell 12:429–439
    [Google Scholar]
  18. Ladin B. F., Blankenship M. I., Ben-Porat T. 1980; Replication of herpes virus DNA. V. Maturation of concatemeric DNA of pseudorabies virus to genome length is related to capsid formation. Journal of Virology 33:1151–1164
    [Google Scholar]
  19. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  20. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones-an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  21. Matz B., Subak-Sharpe J. H., Preston V. G. 1983; Physical mapping of temperature-sensitive mutations of herpes simplex virus type 1 using cloned restriction endonuclease fragments. Journal of General Virology 64:2261–2270
    [Google Scholar]
  22. Morgan C., Ellison S. A., Rose H. M., Moore D. H. 1954; Structure and development of viruses as observed in the electron microscope. Journal of Experimental Medicine 100:195–202
    [Google Scholar]
  23. Newcomb W. W., Brown J. C. 1989; Use of Ar+ plasma etching to localize structural proteins in the capsid of herpes simplex virus type 1. Journal of Virology 63:4697–4702
    [Google Scholar]
  24. Nil S., Rosenkranz H. S., Morgan C., Rose H. M. 1968; Electron microscopy of herpes simplex virus III. Effect of hydroxyurea. Journal of Virology 2:1163–1171
    [Google Scholar]
  25. Pancake B. A., Aschman D. P., Schaffer P. A. 1983; Genetic and phenotypic analysis of herpes simplex virus type 1 mutants conditionally resistant to immune cytolysis. Journal of Virology 47:568–585
    [Google Scholar]
  26. Pellett P. E., Jenkins F. J., Ackermann M., Sarmiento M., Roizman B. 1986; Transcription initiation sites and nucleotide sequence of a herpes simplex virus 1 gene conserved in the Epstein- Barr virus genome and reported to affect the transport of viral glycoproteins. Journal of Virology 60:1134–1140
    [Google Scholar]
  27. Perdue M. L., Cohen J. C., Kemp M. C., Randall C. C., O’Callaghan D. J. 1975; Characterization of three species of nucleocapsids of equine herpesvirus type 1 (EHV-1). Virology 64:187–204
    [Google Scholar]
  28. Perdue M. L., Cohen J. C., Randall C. C., O’Callaghan D. J. 1976; Biochemical studies of the maturation of herpesvirus nucleocapsid species. Virology 74:194–208
    [Google Scholar]
  29. Poffenberger K. L., Roizman B. 1985; A non-inverting genome of a viable herpes simplex 1: presence of head to tail linkages in packaged genome and requirements for circularisation after infection. Journal of Virology 53:587–595
    [Google Scholar]
  30. Poffenberger K. L., Tabares E., Roizman B. 1983; Characterization of a viable, non-inverting herpes simplex virus 1 genome derived by insertion of sequences at the L-S component junction. Proceedings of the National Academy of Sciences U.S.A.: 802690–2694
    [Google Scholar]
  31. Preston V. G. 1981; Fine-structure mapping of herpes simplex virus type 1 temperature-sensitive mutations within the short repeat region of the genome. Journal of Virology 39:150–161
    [Google Scholar]
  32. Preston V. G., Coates J. A. V., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  33. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  34. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  35. Schaffer P. A., Brunschwig J. P., McCombs R. M., Benyesh-Melnick M. 1974; Electron microscopic studies of temperature- sensitive mutants of herpes simplex virus type 1. Virology 62:444–457
    [Google Scholar]
  36. Schaffer P. A., Wagner E. K., Devi-Rao G. B., Preston V. G. 1987; Herpes simplex virus. In Genetic Maps 1987 4 pp 93–98 O’Brien S. J. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Schrag J. D., Prasad B. V. V., Rixon F. J., Chiu W. 1989; Three-dimensional structure of the HS VI nucleocapsid. Cell 56:651–660
    [Google Scholar]
  38. Sherman G., Bachenheimer S. L. 1987; DNA processing in temperature-sensitive morphogenic mutants of HSV-1. Virology 158:427–430
    [Google Scholar]
  39. Sherman G., Bachenheimer S. L. 1988; Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163:471–480
    [Google Scholar]
  40. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  41. Spang A. E., Godowski P. J., Knipe D. M. 1983; Characterization of herpes simplex virus 2 temperature-sensitive mutants whose lesions map in or near the coding sequence for the major DNA- binding protein. Journal of Virology 45:332–342
    [Google Scholar]
  42. Stow N. D., Wilkie N. M. 1978; Physical mapping of temperature-sensitive mutations of herpes simplex virus type 1 by intertypic market rescue. Virology 90:1–11
    [Google Scholar]
  43. Stow N. D., Subak-Sharpe J. H., Wilkie N. M. 1978; Physical mapping of herpes simplex virus type 1 mutations by marker rescue. Journal of Virology 28:182–192
    [Google Scholar]
  44. Stow N.D, McMonagle E., Davison A. J. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  45. Twigg A. J., Sherratt D. J. 1980; Trans-complementable copy- number mutants of plasmid ColEl. Nature; London: 283216–218
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-71-10-2377
Loading
/content/journal/jgv/10.1099/0022-1317-71-10-2377
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error