1887

Abstract

Summary

We studied the association of herpes simplex type 1 (HSV-1) glycoprotein D (gD-1) expression in epidermal cells (EC) with virus-specific immunity and protection of mice from fatal HSV-2 challenge. Vaccinia virus recombinants containing gD-1 under the control of an early (VP176) or late (VP254) vaccinia virus promoter were used. Mature gD-1 protein was expressed in VP176-infected EC and they had accessory cell function for HSV-2-induced T cell proliferation of immune lymph node cells (LNC). It was not expressed in VP254-infected EC and they did not act as accessory cells. LNC from VP176- but not VP254-immunized mice proliferated in response to HSV antigen and only VP176-immunized mice had complete long-term protection from HSV-2 challenge.

Keyword(s): glycoprotein D , HSV and vaccinia virus
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-9-2513
1989-09-01
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/9/JV0700092513.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-9-2513&mimeType=html&fmt=ahah

References

  1. Aurelian L., Yasumoto S., Smith C. C. 1988; Antigen-specific immune-suppressor factor in herpes simplex virus type 2 infections of UV B-irradiated mice. Journal of Virology 62:2520–2524
    [Google Scholar]
  2. Bablanian R. 1984; Poxvirus cytopathogenicity: effects on cellular macromolecular synthesis. In Comprehensive Virology 19391–421 Fraenkel-Conrat H., Wagner R. R. New York: Plenum Press;
    [Google Scholar]
  3. Balachandran N., Bacchettt S., Rawls W. E. 1982; Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infection and Immunity 37:1132–1137
    [Google Scholar]
  4. Bertholet C., Drillien R., Wittek R. 1985; One hundred base pairs of 5’ flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription. Proceedings of the National Academy of SciencesU.S.A. 82:2096–2100
    [Google Scholar]
  5. Buller R. M. L., Moss B. 1985; Genetic basis for vaccinia virus virulence. In Vaccinia Viruses as Vectors for Vaccine Antigens37–46 Quinnan G. V. JR Amsterdam: Elsevier;
    [Google Scholar]
  6. Cohen G. h., Long D., Ekenberg R. J. 1980; Synthesis and processing of glycoprotein gD and gC of herpes simplex virus type 1. Journal of Virology 36:429–439
    [Google Scholar]
  7. Coupar B. E. H., Andrew M. E., Both G. W., Boyle D. B. 1986; Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. European Journal of Immunology 16:1479–1487
    [Google Scholar]
  8. Cremer K. J., Mackett M., Wohlenberg C., Notkins A. L., Moss B. 1985; Vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D prevents latent herpes in mice. Science 228:737–739
    [Google Scholar]
  9. Eisenberg R. J., Ponce de leon M., Pereira L., Long D., Cohen G. H. 1982; Purification of glycoprotein gD of herpes simplex virus types 1 and 2 by use of monoclonal antibody. Journal of Virology 41:1099–1104
    [Google Scholar]
  10. Friedman R. M., Baron S., Buckler C. E., Steinmuller R. L. 1962; The role of antibody, delayed hypersensitivity, and interferon production in recovery of guinea pigs from primary infection with vaccinia virus. Journal of Experimental Medicine 116:347–356
    [Google Scholar]
  11. Hayashi Y., Aurelian L. 1986; Immunity to herpes simplex virus type 2: viral antigen presenting capacity of epidermal cells and its impairment by ultraviolet irradiation. Journal of Immunology 136:1087–1092
    [Google Scholar]
  12. Howes E. L., Taylor W., Mitchison N. A., Simpson E. 1979; MHC matching shows that at least two T-cell subsets determine resistance to HSV. Nature London: 27767–68
    [Google Scholar]
  13. Hruby D. E., Ball L. A. 1982; Mapping and identification of the vaccinia virus thymidine kinase gene. Journal of Virology 43:403–409
    [Google Scholar]
  14. Kotwal G. J., Moss B. 1988; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  15. Martin S., Rouse B. T. 1987; The mechanism of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: clearance of local infection. Journal of Immunology 138:3431–3437
    [Google Scholar]
  16. Mills K. H. G. 1986; Processing of viral antigens and presentation to class II-restricted T cells. Immunology Today 7:260–263
    [Google Scholar]
  17. Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., waldmann H., Prospero T. 1987; Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. Journal of General Virology 68:825–833
    [Google Scholar]
  18. Natuk R. J., Holowczak J. A. 1985; Vaccinia virus proteins on the plasma membrane of infected cells. III. Infection of peritoneal macrophages. Virology 147:354–372
    [Google Scholar]
  19. Panicali D., Davis S. W., Mercer S. R., Paoletti E. 1981; Two major DNA variants present in serially propagated stocks of WR strain of vaccinia virus. Journal of Virology 37:1000–1010
    [Google Scholar]
  20. Stingl G., Tawaki K., Katz S. I. 1980; Origin and function of epidermal Langerhans cells. Immunology Review 53:149–174
    [Google Scholar]
  21. Wachsman M., Aurelian L., Smith C. C., Lipinskas B. R., Perkus M. E., Paoletti e. 1987; Protection of guinea pigs from primary and recurrent herpes simplex virus (HSV) type 2 cutaneous disease with vaccinia virus recombinants expressing HSV glycoprotein D. Journal of Infectious Diseases 155:1188–1197
    [Google Scholar]
  22. Wachsman M., Aurelian L., Hunter J. C. R., Perkus M. E., Paoletti E. 1988; Expression of herpes simplex virus glycoprotein D on antigen presenting cells infected with vaccinia recombinants and protective immunity. Bioscience Reports 8:323–334
    [Google Scholar]
  23. Watson R. J., enquist L. W. 1985; Genetically engineered herpes simplex virus vaccines. Progress in Medical Virology 31:84–108
    [Google Scholar]
  24. Watson R. J., Weis J. H., Salstrom J. S., Enquist L. W. 1982; Herpes simplex virus type 1 glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science 218:381–384
    [Google Scholar]
  25. Weir J. P., Moss B. 1984; Regulation of expression and nucleotide sequence of a late vaccinia virus gene. Journal of Virology 51:662–669
    [Google Scholar]
  26. Yasumoto S., Okabe N., Mori R. 1986; Role of epidermal Langerhans cells in resistance to herpes simplex virus infection. Archives of Virology 90:261–271
    [Google Scholar]
  27. Yasumoto S., Hayashi Y., Smith C. C., Aurelian L. 1987; Immunity to herpes simplex virus type 2: suppressor cell subpopulations and soluble suppressor factors in ultraviolet irradiated mice. Journal of Immunology 139:2788–2793
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-9-2513
Loading
/content/journal/jgv/10.1099/0022-1317-70-9-2513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error