1887

Abstract

Summary

The polymerase chain reaction (PCR) was employed to detect herpes simplex virus (HSV) sequences in the DNA, and HSV gene expression in total cell RNA, extracted from cervical and trigeminal ganglia of mice during productive and latent infection with HSV-1, strain SC16. Such gene expression was detected in 1 μg or less of RNA, the quantity anticipated to be present in one or two cervical ganglia. Within the limits of the primers available, gene expression during latency appeared to be restricted to the latency-associated transcript (LAT). The 195 base portion of the LAT amplified by the PCR was sequenced and found to contain several base changes and deletions with respect to published sequences for different HSV strains. These mutations, within the putative open reading frame 2 of the LAT, formed stop or terminator signals, which suggests that the LAT does not act to establish or maintain latency through translation to a protein. The primers for the LAT also amplified a 300 bp fragment from any murine and some other mammalian RNAs. Apart from the oligonucleotide primers, this fragment did not show any homology with HSV.

Keyword(s): HSV-1 , LAT and PCR
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-9-2345
1989-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/9/JV0700092345.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-9-2345&mimeType=html&fmt=ahah

References

  1. Blyth W. A., Harbour D. A., Hill T. J. 1984; Pathogenesis of zosteriform spread of herpes simplex virus in the mouse. Journal of General Virology 65:1477–1486
    [Google Scholar]
  2. Brandhorst B. P., McConkey E. H. 1974; Stability of nuclear RNA in mammalian cells. Journal of Molecular Biology 85:451–163
    [Google Scholar]
  3. Chaconas G., Van de sande J. H. 1980; 5′-32P labeling of RNA and DNA restriction fragments. Methods in Enzymology 65:75–88
    [Google Scholar]
  4. Chelly J., Kaplan J.-C., Maire P., Gautron S., Kahn S. A. 1988; Transcription of the dystrophin gene in human muscle and non-muscle tissues. Nature London: 33858–860
    [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., Macdonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  6. Cox K. H., Deleon D. V., Angerer L. M., Angerer R. C. 1984; Detection of mRNAs in sea urchin embryos by in situ hybridisation using asymmetric RNA probes. Developmental Biology 101:485–502
    [Google Scholar]
  7. Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., Straus S. E. 1987; Latent herpes simplex virus in human trigeminal ganglia. New England Journal of Medicine 317:1427–1432
    [Google Scholar]
  8. Croen K. D., Ostrove J. M., Dragovic L. J., Straus S. E. 1988; Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proceedings of the National Academy of SciencesU.S.A 85:9773–9777
    [Google Scholar]
  9. Galloway D. A., Fenoglio C. M., Mcdougall J. K. 1982; Limited transcription of the herpes simplex virus genome when latent in human sensory ganglia. Journal of Virology 41:686–691
    [Google Scholar]
  10. Goldstein D. J., Weller B. K. 1988; Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. Journal of Virology 62:196–205
    [Google Scholar]
  11. Goodpasture E. W. 1929; Herpetic infections with special reference to involvement of the nervous system. Medicine, Baltimore 7:223–243
    [Google Scholar]
  12. Harbour D. A., Hill T. J., Blyth W. A. 1983; Recurrent herpes simplex in the mouse: inflammation in the skin and activation of virus in the ganglia following peripheral stimulation. Journal of General Virology 64:1491–1498
    [Google Scholar]
  13. Higuchi R., Von beroldingen C., H„ Sensabaugh G. F., Erlich H. A. 1988; DNA typing from single hairs. Nature London: 332543–546
    [Google Scholar]
  14. Hill T. J. 1985; Herpes simplex virus latency. In The Herpesviruses 3175–240 Roizman B. New York: Plenum Press;
    [Google Scholar]
  15. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. Journal of General Virology 28:341–353
    [Google Scholar]
  16. Itoyama Y., Sekizawa T., Openshaw H., Kogure K., Kuroiwa Y. 1984; Immunocytochemical localization of herpes simplex virus antigen in the trigeminal ganglia of experimentally infected mice. Journal of Neurological Sciences 66:67–75
    [Google Scholar]
  17. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. 1988; A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257
    [Google Scholar]
  18. Lynas C., Cook S. D., Laycock K. A., Bradfield J. W. B., Maitland N. J. 1989; Detection of latent virus mRNA in tissues using the polymerase chain reaction. Journal of Pathology 157:285–289
    [Google Scholar]
  19. Mcconlogue L., Brow M. A. D., Innis M. A. 1988; Structure-independent DNA amplification by PCR using 7-deaza-2′-deoxyguanosine. Nucleic Acids Research 16:9869
    [Google Scholar]
  20. Mcknight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  21. Maitland N. J., Kinross J. H., Busuttill A., Ludgate S. M., Smart G. E., Jones K. E. 1981; The detection of DNA tumour virus-specific RNA sequences in abnormal human cervical biopsies by in situ hybridization. Journal of General Virology 55:123–137
    [Google Scholar]
  22. Maitland N. J., Cox M. F., Lynas C., Prime S., Crane I., Scully C. 1987; Nucleic acid probes in the study of latent viral disease. Journal of Oral Pathology 16:199–211
    [Google Scholar]
  23. Mills D. R., Kramer F. R. 1979; Structure-independent nucleotide sequence analysis. Proceedings of the National Academy of SciencesU.S.A 76:2232–2235
    [Google Scholar]
  24. Perry L. J., Mcgeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:2831–2846
    [Google Scholar]
  25. Perry L. J., Rixon F. J., Everett R. D., Frame M.C., Mcgeoch D. J. 1986; Characterization of the IE110 gene of herpes simplex virus type 1. Journal of General Virology 67:2365–2380
    [Google Scholar]
  26. Puga A., Notkins A. L. 1987; Continued expression of a poly(A)+ transcript of herpes simplex virus type 1 in trigeminal ganglia of latently infected mice. Journal of Virology 61:1700–1703
    [Google Scholar]
  27. Puga A., Rosenthal J. D., Openshaw H., Notkins A. L. 1978; Herpes simplex virus DNA and mRNA sequences in acutely and chronically infected trigeminal ganglia of mice. Virology 89:102–111
    [Google Scholar]
  28. Rock D. L., Fraser N. W. 1983; Detection of HSV-1 genome in central nervous system of latently infected mice. Nature London: 302523–525
    [Google Scholar]
  29. Rock D. L., Fraser N. W. 1985; Latent herpes simplex virus type 1 DNA contains two copies of the virion DNA joint region. Journal of Virology 55:849–852
    [Google Scholar]
  30. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgardd J. R., Wechsler S. L. 1987a; Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. Journal of Virology 61:3820–3826
    [Google Scholar]
  31. Rock D. L., Beam S. L., Mayfield J. E. 1987b; Mapping bovine herpesvirus type 1 latency-related RNA in trigeminal ganglia of latently infected rabbits. Journal of Virology 61:3827–3831
    [Google Scholar]
  32. Saiki R. K., Bugawan T. L., Horn G. T., Mullis K.B., Erlich H. A. 1986; Analysis of enzymatically amplified (β-globin and HLA-DQ α DNA with allele-specific oligonucleotide probes. Nature London: 324:164–166
    [Google Scholar]
  33. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi H., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  34. Sarkar G., Sommer S. S. 1988; RNA amplification with transcript sequencing (RAWTS). Nucleic Acids Research 16:5197
    [Google Scholar]
  35. Shaw A. P., Poirier V., Tyler S., Mott M., Berry J., Maitland N. J. 1988; Expression of the N-myc oncogene in Wilm’s tumour and related tissues. Oncogene 3:143–149
    [Google Scholar]
  36. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  37. Spivak J. G., Fraser N. W. 1987; Detection of herpes simplex virus type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  38. Stevens J.G., Wagner E. K., Devi-rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus α gene is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  39. Tenser R. B., Dawson M., Ressel S. J., Dunstan M. F. 1982; Detection of herpes simplex virus mRNA in latently infected trigeminal ganglion neurons by in situ hybridization. Annals of Neurology 11:285–291
    [Google Scholar]
  40. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of SciencesU.S.A 77:5201–5205
    [Google Scholar]
  41. Tullo A. B., Shimeld C., Blyth W. A., Hill T. J., Easty T. J. 1982; Spread of virus and distribution of latent infection following ocular herpes simplex in the non-immune and immune mouse. Journal of General Virology 63:95–101
    [Google Scholar]
  42. Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y.-F., Flanagan W. M., Stevens J. G. 1988a; Physical characterization of the herpes simplex virus latency-associated transcript in neurons. Journal of Virology 62:1194–1202
    [Google Scholar]
  43. Wagner E. K., Flanagan W. M., Devi-rao G., Zhang Y.-F., Hill J. M., Anderson K. P., Stevens J. G. 1988b; The herpes simplex virus latency-associated transcipt is spliced during the latent phase of infection. Journal of Virology 62:4577–4585
    [Google Scholar]
  44. Walz M. A., Yamamoto H., Notkins A. L. 1976; Immunological response restricts number of cells in sensory ganglia infected with herpes simplex virus. Nature London: 264554–556
    [Google Scholar]
  45. Wechsler S. L., Nesburn A. B., Watson R., Slanina S., Ghiasi H. 1988; Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans. Journal of General Virology 69:3101–3106
    [Google Scholar]
  46. Wildy P., Field H. J., Nash A. A. 1982; Classical herpes latency revisited. In Virus Persistence, Society for General Microbiology Symposium 33133–167 Mahy B. W. J., Minson A. C., Darby G. K. Cambridge: Cambridge University Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-9-2345
Loading
/content/journal/jgv/10.1099/0022-1317-70-9-2345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error