1887

Abstract

SUMMARY

Seventeen independent cell clones were isolated from C127 cells transformed by bovine papillomavirus type 1 (BPV-1). Transformants showed differing degrees of expression of the transformed phenotype as monitored by saturation density, doubling time, growth in medium with a low serum concentration and colony-forming efficiency in soft agar. The degree of expression of the transformed phenotype did not correlate with either the BPV-1 copy number or levels of BPV-1-specific RNA in the transformed cell clones. A characteristic transformed cell clone, T1c, showed the lowest degree of expression of the transformed phenotype but contained the highest copy number of BPV-1 DNA and the highest level of BPV-1-specific mRNA. When we analysed different transformants by two-dimensional gel electrophoresis, we found that a set of six proteins changed quantitatively. Changes in the expression of these proteins were most consistent in clones expressing the greatest number of parameters of transformation, e.g. clone T4a. These data indicate that changes in the expression of cellular genes may correlate with the degree of expression of the transformed phenotype.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-6-1593
1989-06-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/6/JV0700061593.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-6-1593&mimeType=html&fmt=ahah

References

  1. Amtmann E., Sauer G. 1982; Activation by non-expressed bovine papilloma virus genomes by tumour promoters. Nature, London 296:675–677
    [Google Scholar]
  2. Babiss L. E., Fisher P. B. 1986; Characterization of Fisher rat embryo (CREF) cells transformed by bovine papillomavirus type 1. Virology 154:180–194
    [Google Scholar]
  3. Babiss L. E., Guernsey D. L., Fisher P. B. 1985; Regulation of anchorage-independent growth by thyroid hormone in type 5 adenovirus-transformed rat embryo cells. Cancer Research 45:6017–6023
    [Google Scholar]
  4. Chen E. Y., Howley P. M., Levinson A. D., Seeburg P. H. 1982; The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature, London 299:529–534
    [Google Scholar]
  5. Coggins L. W., Ma J., Slater A. A., Campo M. S. 1985; Sequence homologies between bovine papillomavirus genomes mapped by a novel low-stringency heteroduplex method. Virology 143:603–611
    [Google Scholar]
  6. Dimaio D., Guralski D., Schiller J. T. 1986; Translation of open reading frame E5 of bovine papillomavirus is required for its transforming activity. Proceedings of the National Academy of Sciences, U.S.A 83:1797–1801
    [Google Scholar]
  7. Dvoretzky I., Shober R., Chattopadhyay S. K., Lowy D. R. 1980; A quantitative in vitro focus assay in mouse cells for bovine papilloma virus. Virology 103:369–375
    [Google Scholar]
  8. Engel L. W., Heilman C. A., Howley P. M. 1983; Transcriptional organization of bovine papillomavirus type 1. Journal of Virology 47:516–528
    [Google Scholar]
  9. Groff D. E., Lancaster W. D. 1986; Genetic analysis of the 3′ early region transformation and replication function of bovine papillomavirus type 1. Virology 150:221–230
    [Google Scholar]
  10. Law M. F., Lowy D. R., Dvoretzky I., Howley P. M. 1981; Mouse cells transformed by bovine papilloma virus contain only extrachromosomal viral DNA sequences. Proceedings of the National Academy of Sciences, U.S.A 78:2727–2731
    [Google Scholar]
  11. Levenson R. M., Brinckmann U. G., Androphy E. J., Schiller J. T., Turek L., Chin M., Broker T. R., Chow L. T., Yound D. A. 1987; Papillomavirus-specific inductions of cellular proteins in murine C127 cells. In Cancer Cells 5137–144 Steinberg B. M., Brandsma J. L., Taichman L. B. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Matlashewski G., Schneider J., Banks L., Jones N., Murray A., Crawford L. 1987; Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO Journal 6:1741–1746
    [Google Scholar]
  13. Sarver N., Byrne J. C., Howley P. M. 1982; Transformation and replication in mouse cells of a bovine papillomavirus pML2 plasmid vector that can be rescued in bacteria. Proceedings of the National Academy of Sciences, U.S.A 79:7147–7151
    [Google Scholar]
  14. Schiller I. T., Vass W. C., Lowy D. R. 1984; Identification of a second transforming region in bovine papillomavirus DNA. Proceedings of the National Academy of Sciences, U.S.A 81:7880–7884
    [Google Scholar]
  15. Schiller J. T., Vass W. C., Vousden K. H., Lowy D. R. 1986; E5 open reading frame of bovine papilloma type 1 encodes a transforming gene. Journal of Virology 57:1–6
    [Google Scholar]
  16. Shirasawa H., Tomita Y., Sekiya S., Takamizawa H., Simizu B. 1987; Integration and transcription of human papillomavirus type 16 and 18 sequences in cell lines derived from cervical carcinomas. Journal of General Virology 68:583–591
    [Google Scholar]
  17. Smith K. T., Campo M. S. 1988; “Hit and run” transformation of mouse C127 cells by bovine papillomavirus type 4: the viral DNA is required for the initiation but not for maintenance of the transformed phenotype. Virology 164:39–47
    [Google Scholar]
  18. Spalholz B. A., Yang Y. C., Howley P. M. 1985; Transactivation of a bovine papillomavirus transcriptional regulatory element of the E2 gene product. Cell 42:183–191
    [Google Scholar]
  19. Tomita Y., Kubota K., Kasai T., Sekiya S., Takamizawa H. S., Simizu B. 1986; Detection of human papillomavirus DNA in genital warts, cervical dysplasias and neoplasias. Intervirology 25:151–157
    [Google Scholar]
  20. Yang Y. C., Spalholtz B. A., Rabson M. S., Howley P. M. 1985a; Dissociation of transforming and trans-activation functions for bovine papillomavirus type 1. Nature, London 318:575–577
    [Google Scholar]
  21. Yang Y. C., Okayama H., Howley P. M. 1985b; Bovine papillomavirus contains multiple transforming genes. Proceedings of the National Academy of Sciences, U.S.A 82:1030–1034
    [Google Scholar]
  22. Yasumoto S., Doniger J., Dipaolo J. A. 1987; Differential early viral gene expression in two stages of human papillomavirus type 16 DNA-induced malignant transformation. Molecular and Cellular Biology 7:2165–2172
    [Google Scholar]
  23. Young D. A., Voris B. P., Maytin E. V., Colbert R. A. 1983; Very high-resolution two-dimensional electrophoretic separation of proteins on giant gels. Methods in Enzymology 91:196–214
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-6-1593
Loading
/content/journal/jgv/10.1099/0022-1317-70-6-1593
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error