1887

Abstract

Summary

The nucleotide sequences of the genes that code for the major inner capsid protein, VP6, of the human rotavirus strain 1076 (subgroup I), porcine rotavirus Gottfried (subgroup II), equine rotavirus strain H-2 (non-I/II) and equine rotavirus strain FI-14 (both subgroups I and II) have been determined. The sixth segment positive-stranded RNA encodes a protein of 397 amino acids in all strains with the exception of strain H-2 in which it encodes a protein of 399 amino acids. Alignment of amino acid sequences of the VP6 protein of strain FI-14 and subgroup II rotaviruses (Wa and Gottfried) indicates a high degree of homology (94%), while homology between strain FI-14 and subgroup I rotaviruses (SA-11, RF and 1076) was somewhat less (90 to 92%). On the other hand a high degree of conservation of amino acid sequence (95 to 97%) was observed between the H-2 strain and subgroup I rotaviruses. Five regions that may contribute to subgroup epitopes were identified. Region A (amino acids 45, 56) and region C (amino acids 114, 120) may contribute to subgroup I epitopes and regions B (amino acids 83, 86, 89, 92), D (amino acids 312 or 314, 317 or 319) and E (amino acids 341 or 343, 350 or 352) may contribute to subgroup II epitopes. When analysed using the Western blot technique monoclonal antibodies specific for VP6 epitopes shared by all rotaviruses were observed to react with both monomeric and trimeric forms of VP6, while monoclonal antibodies specific for a subgroup I or II epitope reacted only with the trimeric form of VP6. This observation and the sequence analyses suggest that subgroup antigenic specificity is determined by conformational epitopes produced by the folding of VP6 or the interaction between VP6 monomers.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-69-7-1659
1988-07-01
2022-09-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/69/7/JV0690071659.html?itemId=/content/journal/jgv/10.1099/0022-1317-69-7-1659&mimeType=html&fmt=ahah

References

  1. BOTH G. W., SIEGMAN L. J., BELLAMY A. R., IKEGAMI N., SHATLOM A. J., FURUICHI Y. 1984; Comparative sequence analysis of rotavirus genomic segment 6 - the gene specifying viral subgroups 1 and 2. Journal of Virology 51:97–101
    [Google Scholar]
  2. COHEN J., LEFEVRE F., ESTES M. K., BREMONT M. 1984; Cloning of bovine rotavirus (RF strain): nucleotide sequence of the gene coding for the major capsid protein. Virology 138:178–182
    [Google Scholar]
  3. ERICSON B. L., GRAHAM D. Y., MASON B. B., ESTES M. K. 1982; Identification, synthesis and modification of simian rotavirus SA-11 polypeptides in infected cells. Journal of Virology 42:825–839
    [Google Scholar]
  4. ESPEIO R. T., LOPEZ S., ARIAS C. 1981; Structural polypeptides of simian rotavirus SA-11 and the effect of trypsin. Journal of Virology 37:156–160
    [Google Scholar]
  5. ESTES M. K., MASON B. B., CRAWFORD S., COHEN J. 1984; Cloning and nucleotide sequence of the simian rotavirus gene 6 that codes for the major inner capsid protein. Nucleic Acids Research 12:1875–1887
    [Google Scholar]
  6. ESTES M. K., CRAWFORD S., PENARANDA M., PETRIE B., BURNS J., CHAN W., ERICSON B., SMITH G., SUMMERS M. 1987; Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. Journal of Virology 61:1488–1494
    [Google Scholar]
  7. FLORES J., GREENBERG H. B., MYSLINSKI J., KALICA A. R., WYATT R. G-, KAPIKIAN A. Z., CHANOCK R. M. 1982; Use of transcription probes for genotyping rotavirus reassortants. Virology 121:288–295
    [Google Scholar]
  8. GORZLGLIA M., LARREA C, LIPRANDI F., ESPARZA J. 1985; Biochemical evidence for the oligomeric (possibly trimeric) structure of the major inner capsid polypeptide (45K) of rotaviruses. Journal of General Virology 66:1889–1900
    [Google Scholar]
  9. GORZIGLIA M., HOSHINO Y., BUCKLER-WHITE A., BLUMENTALS I., GLASS R., FLORES J., KAPIKIAN A. Z., CHANOCK R. M. 1986; Conservation of amino acid sequence of VP8 and cleavage region of 84K outer capsid protein among rotaviruses recovered from asymptomatic neonatal infection. Proceedings of the National Academy of Sciences, U.S.A 83:7039–7043
    [Google Scholar]
  10. GREENBERG H., MCAULIFFE V., VALDESUSO J., WYATT R., FLORES J., KALICA A., HOSHINO Y., SINGH N. 1983; Serological analysis of the subgroup protein of rotavirus using monoclonal antibodies. Infection and Immunity 39:91–99
    [Google Scholar]
  11. HOLMES I. H. 1983 Rotaviruses. The Reoviridae359–423 Edited by Joklik W. K. New York & London: Plenum Press;
    [Google Scholar]
  12. HOSHINO Y., WYATT R. G., GREENBERG H. B., KALICA A. R., FLORES J., KAPIKIAN A. Z. 1983; Isolation, propagation, and characterization of a second equine rotavirus serotype. Infection and Immunity 41:1031–1037
    [Google Scholar]
  13. HOSHINO Y., WYATT R. G., GREENBERG H. B., FLORES J., KAPIKIAN A. Z. 1984; Serotypic similarity and diversity of rotavirus of mammalian and avian origin as studied by plaque-reduction neutralization. Journal of Infectious Diseases 149:694–702
    [Google Scholar]
  14. HOSHINO Y., SERENO M. M., MIDTHUN K., FLORES J., KAPIKIAN A. Z., CHANOCK R. M. 1985; Independent segregation of two antigenic specificities (VP3 and VP7) involved in neutralization of rotavirus infectivity. Proceedings of the National Academy of Sciences, U.S.A 82:8701–8704
    [Google Scholar]
  15. HOSHINO Y., GORZIGLIA M., VALDESUSO J., ASKAA J., GLASS R. I., KAPIKIAN A. Z. 1987a; An equine rotavirus (FI-14 strain) which bears both subgroup I and subgroup II specificities on its VP6. Virology 157:488–496
    [Google Scholar]
  16. HOSHINO Y., SERENO M., MIDTHUN K., FLORES J., CHANOCK R. M., KAPIKIAN A. Z. 1987b; Analysis by plaque reduction neutralization assay of intertypic rotaviruses suggests that gene reassortaient occurs in vivo. Journal of Clinical Microbiology 25:290–294
    [Google Scholar]
  17. KALICA A. R., GREENBERG H. B., WYATT R. G., FLORES J., SERENO M. M., KAPIKIAN A. Z., CHANOCK R. M. 1981; Genes of human (strain Wa) and bovine (strain UK) rotaviruses that code for neutralization and subgroup antigens. Virology 112:385–390
    [Google Scholar]
  18. KAPIKIAN A. Z., CLINE W. L., GREENBERG H. B., WYATT R. G., KALICA A. R., BANKS C. E., JAMES H. D. JR, FLORES J., CHANOCK R. M. 1981; Antigenic characterization of human and animal rotaviruses by immune adherence hemagglutination assay (IAH A): evidence for distinctness of I AHA and neutralization antigens. Infection and Immunity 33:415–425
    [Google Scholar]
  19. LAEMMLI U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  20. MIDTHUN K., VALDESUSO J., HOSHINO Y., FLORES J., KAPIKIAN A. Z., CHANOCK R. M. 1987; Analysis by RNA-RNA hybridization assay of intertypic rotaviruses suggests that gene reassortaient occurs in vivo. Journal of Clinical Microbiology 25:295–300
    [Google Scholar]
  21. NOVO E., ESPARZA J. 1981; Composition and topography of structural polypeptides of bovine rotavirus. Journal of General Virology 56:325–335
    [Google Scholar]
  22. OFFIT P. A., BLAVAT G. 1986; Identification of the two rotavirus genes determining neutralization specificities. Journal of Virology 57:376–378
    [Google Scholar]
  23. POTHIER P., KOHLI E., DROUET E., GHIM S. 1987; Analysis of the antigenic sites on the major inner capsid protein (VP6) of rotaviruses using monoclonal antibodies. Annales de l’Institut Pasteur j Virology 138:285–295
    [Google Scholar]
  24. SABARA M., READY K. F. M., FRENCHICK P. J., BABIUK L. A. 1987; Biochemical evidence for the oligomeric arrangement of bovine rotavirus nucleocapsid protein and its possible significance in the immunogenicity of this protein. Journal of General Virology 68:123–133
    [Google Scholar]
  25. TANIGUCHI K., URASAWA T., URASAWA S., YASUHARA T. 1984; Production of monoclonal antibodies against human rotaviruses and their application to an enzyme-linked immunosorbent assay for subgroup determination. Journal of Medical Virology 14:115–125
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-69-7-1659
Loading
/content/journal/jgv/10.1099/0022-1317-69-7-1659
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error