1887

Abstract

Summary

Persistent mumps virus infections were established in rat pheochromocytoma (PC- 12) and human medulloblastoma (TE-671) continuous cell lines. Significant amounts of infectious virus were produced by the PC-12 cells; infectious virus production by the TE-671 cells was limited. This restricted replication may be due to decreased production of viral envelope glycoproteins by TE-671 cells. The presence of virus changed the distribution of stimulus-evoked electrical responsiveness of both cell lines from responsiveness composed primarily of normal, rapidly rising, all-or-nothing action potentials to one dominated by abnormal, slowly rising, graded responses or by no response at all. Such changes have the potential to disrupt neural integration within the nervous system, and suggest a new mechanism by which persistent virus infections might play a role in chronic neurological and/or mental disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-9-2501
1987-09-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/9/JV0680092501.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-9-2501&mimeType=html&fmt=ahah

References

  1. Baczko K., Carter M. J., Billeter M., Ter Meulen V. 1984; Measles virus gene expression in subacute sclerosing panencephalitis. Virus Research 7:585–594
    [Google Scholar]
  2. Brandt B. L., Hagiwara S., Kidokoro Y., Miyuazak S. 1976; Action potentials in the rat chromaffin cell and effects of acetylcholine. Journal of Physiology London: 263417–439
    [Google Scholar]
  3. Dichter M. A., Tischler A. S., Greene L. A. 1977; Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line. Nature; London: 268501–504
    [Google Scholar]
  4. Engleman L., Hartigan J. A. 1985; K-means cluster. In BMDP Statistical Software pp 464–473 Dixon W. J. Edited by Berkeley: University of California Press;
    [Google Scholar]
  5. Fukuda J., Kurata T. 1981; Loss of membrane excitability after herpes simplex virus infection in tissue cultured nerve cells from adult mammals. Brain Research 211:235–241
    [Google Scholar]
  6. Fukuda J., Kurata T., Yamaguchi K. 1983; Specific reduction in Na current after infection with herpes simplex virus in cultured mammalian nerve cells. Brain Research 262:79–89
    [Google Scholar]
  7. Grundfest H. 1966; Heterogeneity of excitable membrane: electrophysiological and pharmacological evidence and some consequences. Armais of the New York Academy of Science 137:901–949
    [Google Scholar]
  8. Halbach M., Koschel K. 1979; Impairment of hormone dependent signal transfer by chronic SSPE virus infection . Journal of General Virology 42:615–619
    [Google Scholar]
  9. Hall W. W., Choppin P. W. 1981a; Evidence for lack of synthesis of the M polypeptide of measles virus in brain cells in subacute sclerosing panencephalitis. Virology 99:443–447
    [Google Scholar]
  10. Hall W. W., Choppin P. W. 1981b; Measles virus protein in the brain tissue of patients with subacute sclerosing panencephalitis. Absence of the M protein. New England Journal of Medicine 304:1152–1155
    [Google Scholar]
  11. Hartigan J. A. 1975 Clustering Algorithms New York: Wiley;
    [Google Scholar]
  12. Johnson R. T. 1982 Viral Infections of the Nervous System New York: Raven Press;
    [Google Scholar]
  13. Johnson K. P., Norrby E., Swoveland P., Carrigan D. R. 1981; Experimental subacute sclerosing panencephalitis: selective disappearance of measles virus matrix protein from the central nervous system. Journal of Infectious Diseases 144:161–168
    [Google Scholar]
  14. Julkenen I., Koskiniemi M., Lehtokoski-Lehtiniemi E., Sainio K., Vaheri A. 1985; Chronic mumps virus encephalitis: mumps antibody levels in cerebrospinal fluid. Journal of Neuroimmunology 8:165–167
    [Google Scholar]
  15. Kiraly M., Dolivo M. 1982; Alteration of the electrophysiological activity in sympathetic ganglia infected with a neurotropic virus. I. Presynaptic origin of the spontaneous bioelectric activity. Brain Research 240:43–54
    [Google Scholar]
  16. Koschel K., Muenzel P. 1980; Persistent paramyxovirus infections and behaviour of β-adrenergic receptors in C-6 rat glioma cells. Journal of General Virology 47:513–517
    [Google Scholar]
  17. Koskiniemi M., Manninen N., Vaheri A., Sainio K., Eistola P., Karli P. 1981; Acute encephalitis. Acta medica scandinavica 209:115–120
    [Google Scholar]
  18. Koskiniemi M., Donner M., Petty O. 1983; Clinical appearance and outcome in mumps encephalitis in children. Acta paediatrica 72:603–609
    [Google Scholar]
  19. Mayer M. L., James M. H., Russell R. J., Kelly J. S., Wise J. C. M., Pasternak C. A. 1985; Spontaneous electrical activity induced by herpes virus infection in rat sensory neuron cultures. Brain Research 341:360–364
    [Google Scholar]
  20. Mayer M. L., James M. H., Russell R. J., Kelly J. S., Pasternak C. A. 1986; Changes in excitability induced by herpes simplex viruses in dorsal root ganglia neurons. Journal of Neuroscience 6:391–402
    [Google Scholar]
  21. Muenzel P., Koschel K. 1982; Alterations of phospholipid méthylation and impairment of signal transmission in persistently paramyxovirus-infected C6 rat glioma cells. Proceedings of the National Academy of Sciences U.S.A.: 793692–3696
    [Google Scholar]
  22. Oakes S. G., Petry R. W., Ziegler R. J. 1981; Electrophysiological changes of HSV-l-infected dorsal root ganglia neurons in culture. Journal of Neuropathology & Experimental Neurology 40:380–389
    [Google Scholar]
  23. O’Lague P. H., Huttner S. L. 1980; Physiological and morphological studies of rat pheochromocytoma cells (PC-12) chemically fused and grown in culture. Proceedings of the National Academy of Sciences U.S.A.: 771701–1705
    [Google Scholar]
  24. Oldstone B. A., Holmstoen I., Welsh R. M. 1977; Alterations of acetylcholine enzymes in neuroblastoma cells persistently infected with lymphotic choriomeningitis virus. Journal of Cellular Physiology 91:459–472
    [Google Scholar]
  25. Syapin I. J., Salvaterra P. M., Engelhardt J. K. 1982; Neuronal-like features of TE-671 cells: presence of a functional nicotinic cholinergic receptor. Brain Research 231:365–377
    [Google Scholar]
  26. Vaheri A., Julkunen I., Koskiniemi M. L. 1982; Chronic encephalomyelitis with specific increase in intrathecal mumps antibodies. Lancet ii:685–688
    [Google Scholar]
  27. Wolinsky I. S., Sever A. C. 1985; Mumps virus. In Virology pp 1255–1284 Fields B. N., Knipe D. M., Chanock R. M., Melnick J. L., Roizman B., Shope R. E. Edited by New York: Raven Press;
    [Google Scholar]
  28. Wolinsky J. S., Waxham M. N., Sever A. C. 1985; Protective effects of glycoprotein-specific monoclonal antibodies on the course of experimental mumps virus meningoencephalitis. Journal of Virology 53:727–734
    [Google Scholar]
  29. Ziegler R. J., Stauffer E. K. 1986; Effects of mumps virus on the excitability of PC-12 and TE-671 cells. Society of Neuroscience Abstracts 12:87
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-9-2501
Loading
/content/journal/jgv/10.1099/0022-1317-68-9-2501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error