1887

Abstract

SUMMARY

Amino terminal sequences of the envelope protein E and the three largest nonstructural proteins NS1, NS3, and NS5 of the New Guinea C strain of dengue virus type 2 (DEN-2) were obtained by nucleotide and protein sequencing. Clones were prepared containing cDNA of DEN-2 virus in the plasmid pUC8. The nucleotide sequences of viral cDNA inserts were determined and the cDNA of each clone positioned on the flavivirus genomic map by comparison of the deduced amino acid sequence with that of yellow fever virus. Radiolabelled E, NS1, NS3 and NS5 were purified by lectin affinity chromatography and preparative gel electrophoresis. Purified proteins were subsequently analysed by Edman degradation to establish the origins of the amino termini of these proteins in the deduced DEN-2 amino acid sequence. Thus the amino acid sequences surrounding the likely proteolytic cleavage sites used in the formation of these four proteins were determined. Of particular interest was the sequence containing the amino terminus of NS3, namely Lys-Lys-Gln- Arg-Ala-Gly where Ala is the first amino acid of NS3. Cleavage following one basic residue in the flavivirus polyprotein has not been reported previously.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-5-1317
1987-05-01
2022-01-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/5/JV0680051317.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-5-1317&mimeType=html&fmt=ahah

References

  1. Agarwal K. L., Brunstedt J., Noyes B. E. 1981; A general method for detection and characterization of an mRNA using an oligonucleotide probe. Journal of Biological Chemistry 256:1023–1028
    [Google Scholar]
  2. Bell J. R., Kinney R. M., Trent D. W., Lenches E. M., Dalgarno L., Strauss J. M. 1985; Amino-terminal amino acid sequences of structural proteins of three flaviviruses. Virology 143:224–229
    [Google Scholar]
  3. Birnboim H. c., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Boulton R. w., Westaway E. G. 1977; Togavirus RNA: reversible effect of urea on genomes and absence of subgenomic viral RNA in Kunjin virus-infected cells. Archives of Virology 55:201–208
    [Google Scholar]
  5. Castle E., Nowak T., Leidner U., Wengler G., Wengler G. 1985; Sequence analysis of the viral core protein and the membrane-associated proteins VI and NV2 of the flavivirus West Nile virus and of the genome sequence for these proteins. Virology 145:227–236
    [Google Scholar]
  6. Castle E., Leidner U., Nowak T., Wengler G., Wengler G. 1986; Primary structure of the West Nile flavivirus genome region coding for all non-structural proteins. Virology 149:10–26
    [Google Scholar]
  7. Chen E. Y., Seeburg P. H. 1985; Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170
    [Google Scholar]
  8. Cleaves G. R. 1985; Identification of dengue type 2 virus-specific high molecular weight proteins in virus- infected BHK cells. Journal of General Virology 66:2767–2771
    [Google Scholar]
  9. Crawford G. R., Wright P. J. 1987; Characterization of novel viral polyproteins detected in cells infected by the flavivirus Kunjin and radiolabelled in the presence of the leucine analogue hydroxyleucine. Journal of General Virology 68:365–376
    [Google Scholar]
  10. Dalgarno L., Trent D. w., Strauss J. H., Rice C. M. 1986; Partial nucleotide sequence of the Murray Valley encephalitis virus genome. Comparison of the encoded polypeptides with yellow fever virus structural and non-structural proteins. Journal of Molecular Biology 187:309–323
    [Google Scholar]
  11. Deubel V., Kinney R. M., Trent D. W. 1986; Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology 155:365–377
    [Google Scholar]
  12. Dowling P. C., Giorgi C., Roux L., Dethlefsen L. A., Galantowicz M. E., Blumberg B. M., Kolakofsky D. 1983; Molecular cloning of the 3′-proximal third of Sendai virus genome. Proceedings of the National Academy of Sciences, U.S.A 80:5213–5216
    [Google Scholar]
  13. Edman P., Begg G. 1967; A protein sequenator. European Journal of Biochemistry 1:80–91
    [Google Scholar]
  14. Garoff H., Frischauf A-M., Simons K., Lehrach H., Delius H. 1980; Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature; London: 288236–241
    [Google Scholar]
  15. Hewick R. M., Hunkapillar M. W., Hood L. E., Dreyer W. J. 1981; A gas-liquid solid phase peptide and protein sequenator. Journal of Biological Chemistry 256:7990–7997
    [Google Scholar]
  16. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, U.S.A 78:3824–3828
    [Google Scholar]
  17. Jou W. M., Verhoeyen M., Devos R., Saman E., Fang R., Huylebroeck D., Fiers W. 1980; Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75(H3N2) strain as determined from cloned DNA. Cell 19:683–696
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  19. Lai C-J., Zhao B., Makino Y., Mackow E., Chanock R. M., Brandt W., Burke D. 1986; Cloning full-length DNA sequences of the dengue virus genome for use in elucidating pathogenesis and development of immunoprophylaxis. In Vaccines 86 pp. 393–399 Brown F., Chanock R. M., Lemer R. A. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Ozden S., Poirier B. 1985; Dengue virus induced polypeptide synthesis. Archives of Virology 85:129–137
    [Google Scholar]
  22. Perlman D., Halvorson H. O. 1983; A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  23. Pletnev A. G., Yamshchikov V. F., Blinov V. M. 1986; Tick-borne encephalitis virus genome. The nucleotide sequence coding for virion structural proteins. FEBS Letters 200:317–321
    [Google Scholar]
  24. Porterfield J. s. 1980; Antigenic characteristics and classification of Togaviridae. In The Togaviruses pp. 13–46 Schlesinger R. W. Edited by New York: Academic Press;
    [Google Scholar]
  25. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–735
    [Google Scholar]
  26. Rice C. M., Aebersold R., Teplow D. B., Pata J., Bell J. R., Vorndam V., Trent D. W., Brandriss M. W., Schlesinger J. J., Strauss J. H. 1986; Partial N-terminal amino acid sequences of three non-structural proteins of two flaviviruses. Virology 151:1–9
    [Google Scholar]
  27. Schwartz D. E., Tizard R., Gilbert W. 1983; Nucleotide sequence of Rous sarcoma virus. Cell 32:853–869
    [Google Scholar]
  28. Schwartz T. W. 1986; The processing of peptide precursors. Proline-directed arginyl cleavage and other monobasic processing mechanisms. FEBS Letters 200:1–10
    [Google Scholar]
  29. Shapiro D., Brandt W. E., Russell P. K. 1972; Change involving a viral membrane glycoprotein during morphogenesis of group B arboviruses. Virology 50:906–911
    [Google Scholar]
  30. Smith G. W., Wright P. J. 1985; Synthesis of proteins and glycoproteins in dengue type 2 virus-infected Vero and Aedes albopictus cells. Journal of General Virology 66:559–571
    [Google Scholar]
  31. Strebel K., Beck E. 1986; A second protease of foot-and-mouth disease virus. Journal of Virology 58:893–899
    [Google Scholar]
  32. Toyoda H., Nicklin M. J. H., Murray M. G., Anderson C. W., Dunn J. J., Studier F. W., Wimmer E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
  33. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  34. Von Heijne G. 1983; Patterns of amino acids near signal sequence cleavage sites. European Journal of Biochemistry 133:17–21
    [Google Scholar]
  35. Von Heijne G. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  36. Wallace R. B., Johnson M. J., Suggs S. V., Miyoshi K., Bhatt R., Itakura K. 1981; A set of Synthetic oligodeoxyribonucleotide primers for DNA sequencing in the plasmid vector pBR322. Gene 16:21–26
    [Google Scholar]
  37. Watson M. E. E. 1984; Compilation of published signal sequences. Nucleic Acids Research 12:5145–5164
    [Google Scholar]
  38. Wengler G., Castle E., Leidner U., Nowak T., Wengler G. 1985; Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology 147:264–274
    [Google Scholar]
  39. Westaway E. G. 1980; Replication of flaviviruses. In The Togaviruses pp. 531–581 Schlesinger R. W. Edited by New York: Academic Press;
    [Google Scholar]
  40. Westaway E. G., Schlesinger R. W., Dalrymple J. M., Trent D. w. 1980; Nomenclature of flavivirus- specified proteins. Intervirology 14:114–117
    [Google Scholar]
  41. Westaway E. G., Brinton M. A., Gaidamovich S. Y., Horzinek M. C., Igarashi A., Kaariainen L., Lvov D. K., Porterfield J. s., Russell P. K., Trent D. w. 1985; Flaviviridae. Intervirology 24:183–193
    [Google Scholar]
  42. Wright P. J., Warr H. M. 1985; Peptide mapping of envelope-related glycoproteins specified by the flaviviruses Kunjin and West Nile. Journal of General Virology 66:597–601
    [Google Scholar]
  43. Wright P. J., Warr H. M., Westaway E. G. 1981; Synthesis of glycoproteins in cells infected by the flavivirus Kunjin. Virology 109:418–427
    [Google Scholar]
  44. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-5-1317
Loading
/content/journal/jgv/10.1099/0022-1317-68-5-1317
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error