1887

Abstract

Summary

All Epstein-Barr virus (EBV) isolates can be classified as type A or type B depending upon the identity of their EBV nuclear antigen (EBNA) 2 protein. The great majority of isolates examined to date encode an EBNA 2A protein like that of the reference type A strain B95-8. Type B virus strains, encoding an antigenically distinct EBNA 2B protein, have as yet only been rescued from rare Burkitt’s lymphoma (BL) cell lines of African origin (Jijoye, AG876). Our recent finding that type B isolates are less efficient than type A in transformation assays prompted us to determine (i) the relative contribution the two types of virus make to the incidence of BL in endemic areas of Africa (Kenya) and New Guinea and (ii) the relative incidence of infection with these two types in the normal population in these same areas. On the first point, EBNA 2 gene typing using specific DNA probes showed that four of ten recently established Kenyan BL cell lines and two of four BL cell lines from New Guinea carried type B virus isolates. To address the second point, spontaneous lymphoblastoid cell lines were established from the blood of normal virus carriers and typed for EBNA 2 at the protein level; a significant proportion (> 20 %) of the normal population in both the above BL- endemic areas were infected with type B isolates. This is the first indication of the widespread nature of type B virus infection in any community and the first isolation of such viruses from a non-BL source. The reproducible size of the EBNA 2B protein encoded by all type B isolates irrespective of their geographical origin, and of the EBNA 1 protein encoded by all type B isolates from one area, contrasted markedly with the extreme variability in the size both of EBNA 2A and of EBNA 1 seen generally among type A isolates. This suggests that the number of type B virus strains in existence worldwide could be quite limited. Most importantly, the data suggest that type B viruses, despite their relatively poor performance in transformation assays, can contribute at least as efficiently as can type A viruses to the pathogenesis of BL.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-11-2853
1987-11-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/11/JV0680112853.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-11-2853&mimeType=html&fmt=ahah

References

  1. Adldinger H. K., Delius H., Freese U. K., Clarke J., Bornkamm G. W. 1985; A putative transforming gene of Jijoye virus differs from that of Epstein Barr virus prototypes. Virology 141:221–234
    [Google Scholar]
  2. Bornkamm G. W., Delius H., Zimber U., Hudewentz J., Epstein M. A. 1980; Comparison of Epstein-Barr virus strains of different origin by analysis of the viral DNA. Journal of Virology 35:603–618
    [Google Scholar]
  3. Bornkamm G. W., Hudewentz J., Freese U. K., Zimber U. 1982; Deletion of the nontransformingEpsteinBarr virus strain P ,HR, causes fusion of the large internal repeat to the DSL region. Journal of Virology 43:952–968
    [Google Scholar]
  4. Bornkamm G. W., Von Knebel-Doeberitz M., Lenoir G. M. 1984; No evidence for differences in the EpsteinBarr virus genome carried in Burkitt lymphoma cells and non-malignant lymphoid cells from the same patients. Proceedings of the National Academy of Sciences, U.S.A 81:4930–4934
    [Google Scholar]
  5. Dambaugh T., Hennessy K., Chamnankit L., Kieff E. 1984; U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proceedings of the National Academy of Sciences, U.S.A 81:7632–7636
    [Google Scholar]
  6. Dambaugh T., Hennessy K., Fennewald S., Kieff E. 1986; The EBV genome and its expression in latent infection. In The Epstein-Barr Virus: Recent Advances pp. 13–45 Epstein M. A., Achong B. G. Edited by London: Heinemann;
    [Google Scholar]
  7. Dillner J., Kallin B., Klein G., Jornvall H., Alexander H., Lerner R. 1985; Antibodies against synthetic peptides react with the second Epstein-Barr virus-associated nuclear antigen. EMBO Journal 4:1813–1818
    [Google Scholar]
  8. Epstein M. A., Achong B. G.editors 1986 The Epstein-Barr Virus: Recent Advances London: Heinemann;
    [Google Scholar]
  9. Ernberg I., Kallin B., Dillner J., Falk K., Ehlin-Henriksson B., Hammarskjold M-L., Klein G. 1986; Lymphoblastoid cell lines and Burkitt lymphoma-derived cell lines differ in the expression of a second Epstein-Barr virus encoded nuclear antigen. International Journal of Cancer 38:729–737
    [Google Scholar]
  10. Fresen K. O., Cho M.-S., Zur Hausen H. 1978; Recovery of transforming EBV from non-producer cells after superinfection with non-transforming P3HR-1 EBV. International Journal of Cancer 22:378–383
    [Google Scholar]
  11. Fresen K. O., Cho M.-S., Zur Hausen H. 1980; Recombination between Epstein-Barr virus genomes. In Viruses in Naturally Occurring Cancers. Cold Spring Harbor Conferences on Cell Proliferation 7 pp. 35–44 Essex M., Todaro G., zur Hausen H. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Gregory C. D., Tursz T., Edwards C. F., Tetaud C., Talbot M., Caillou B., Rickinson A. B., Lipinski M. 1987; Identification of a subset of normal B cells with a Burkitt’s lymphoma (BL)-like phenotype. Journal of Immunology 139:313–318
    [Google Scholar]
  13. Griffith I. P. 1972; Immediate visualization of proteins in sodium dodecyl sulphate-polyacrylamide gels by prestaining with remazole dyes. Analytical Biochemistry 46:402–412
    [Google Scholar]
  14. Hennessy K., Kieff E. 1985; A second nuclear protein is encoded by Epstein-Barr virus in latent infection. Science 227:1238–1240
    [Google Scholar]
  15. Lenoir G., Vuillame M., Bonnardel C. 1985; The use of lymphomatous and lymphoblastoid cell lines in the study of Burkitt’s lymphoma. In Burkitt’s Lymphoma: A Human Cancer Model pp. 309–318 Lenoir G., O’Connor G., Olweny C. L. M. Edited by Lyon: IARC;
    [Google Scholar]
  16. Miller G., Robinson J., Heston L., Lipman M. 1974; Differences between laboratory strains of Epstein-Barr virus based on immortalisation, abortive infection, and interference. Proceedings of the National Academy of Sciences, U.S.A 71:4006–4010
    [Google Scholar]
  17. Moss D. J., Rickinson A. B., Pope J. H. 1978; Long-term T-cell-mediated immunity to Epstein-Barr virus in man. I. Complete regression of virus-induced transformation in cultures of seropositive donor leukocytes. International Journal of Cancer 22:662–668
    [Google Scholar]
  18. Muller-Lantzsch N., Lenoir G., Sauter M., Takaki K., Bechet J.-M., Kuklik-Roos C., Wunderlich D., Bornkamm G. 1985; Identification of the coding region for a second Epstein-Barr virus nuclear antigen (EBNA2) by transfection of cloned DNA fragments. EMBO Journal 4:1805–1811
    [Google Scholar]
  19. Pizzo P., Magrath I., Chattopadhyady R., Biggar R., Gerber P. 1978; A new tumour-derived transforming strain of Epstein-Barr virus. Nature; London: 272629–631
    [Google Scholar]
  20. Polack A., Hartl G., Zimber U., Freese U. K., Laux G., Takaki K., Hohn B., Gissman L., Bornkamm G. W. 1984; A complete set of overlapping cosmid clones of M-ABA virus derived from nasopharyngeal carcinoma and its similarity to other Epstein-Barr virus isolates. Gene 27:279–288
    [Google Scholar]
  21. Pulvertaft R. J. v. 1964; Cytology of Burkitt’stumour (African lymphoma). Lancet i:238–240
    [Google Scholar]
  22. Rickinson A. B., Rowe M., Hart I., Yao Q. Y., Henderson L. E., Rabin H., Epstein M. A. 1984; T-Cell-mediated regression of “spontaneous” and of Epstein-Barr-virus-induced B cell transformation in vitro: studies with cyclosporin A. Cellular Immunology 87:646–658
    [Google Scholar]
  23. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. Journal of Virology 61:1310–1317
    [Google Scholar]
  24. Rooney C. M., Gregory C. D., Rowe M., Finerty S., Edwards C. F., Rupani H., Rickinson A. B. 1986; Endemic Burkitt’s lymphoma: phenotypic analysis of tumor biopsy cells and of the derived tumor cell lines. Journal of the National Cancer Institute 77:681–687
    [Google Scholar]
  25. Rowe D., Heston L., Metlay J., Miller G. 1985a; Identification and expression of a nuclear antigen from the genomic region of the Jijoye strain of Epstein-Barr virus that is missing in its non-immortalizing deletion mutant, P3HR-1. Proceedings of the National Academy of Sciences, U.S.A 82:7429–7433
    [Google Scholar]
  26. Rowe M., Rooney C. M., Rickinson A. B., Lenoir G. M., Rupani H., Moss D. J., Stein H., Epstein M. A. 1985b; Distinctions between endemic and sporadic forms of Epstein-Barr virus-positive Burkitt’s lymphoma. International Journal of Cancer 35:435–442
    [Google Scholar]
  27. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987a; Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6:2743–2751
    [Google Scholar]
  28. Rowe M., Evans H. S., Young L. S., Hennessy K., Kieff E., Rickinson A. B. 1987b; Monoclonal antibodies to the latent membrane protein of Epstein-Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. Journal of General Virology 68:1575–1586
    [Google Scholar]
  29. Rymo L., Klein G., Ricksten A. 1985; Expression of a second Epstein-Barr virus-determined nuclear antigen in mouse cells after gene transfer with a cloned fragment of the viral genome. Proceedings of the National Academy of Sciences, U.S.A 82:3435–3439
    [Google Scholar]
  30. Sculley T. B., Walker P. J., Moss D. J., Pope J. H. 1984; Identification of multiple Epstein-Barr virus-induced nuclear antigens with sera from patients with rheumatoid arthritis. Journal of Virology 52:88–93
    [Google Scholar]
  31. Skare J., Farley J., Strominger J. L., Fresen K. O., Cho M. S., Zur Hausen H. 1985; Transformation of Epstein-Barr virus requires DNA sequences in the region of BamHI fragments Y and H. Journal of Virology 55:286–297
    [Google Scholar]
  32. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  33. Zimber U., Adldinger H. K., Lenoir G. M., Vuillaume M., Von Knebel-Doeberitz M., Laux G., Desgranges C., Wittman P., Freese U. K., Schneider U., Bornkamm G. W. 1986; Geographical prevalence of two Epstein-Barr virus types. Virology 154:56–66
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-11-2853
Loading
/content/journal/jgv/10.1099/0022-1317-68-11-2853
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error