1887

Abstract

SUMMARY

Herpes simplex virus (HSV) and human cytomegalovirus (HCMV) are candidates for the induction of premalignant or malignant disease. Morphological transformation studies have failed to demonstrate a viral oncogene, a virus-coded transforming protein or any sequence of DNA that uniquely transforms cells according to one-hit kinetics. Thus the mechanism of transformation is complex. The transformed cells are, however, all oncogenic in the host animal and in immunocompetent mice. Direct evidence for the presence of these viruses in human genital tumours is the finding that a small proportion (about 10%) retain fragments of virus DNA from different regions of the virus genomes. In contrast human papillomavirus (HPV) is strongly associated with genital neoplasia, being present in over 80% of tumours. However, HPV can also be detected in histologically normal tissue.

The most persuasive roles for HSV and HCMV in human tumourigenesis are as mutagens, as activators of cellular transcription or in switching on the synthesis of host cell proteins not normally expressed in untransformed cells. In these roles the prospects of further defining roles for HSV and HCMV in the multistage process of oncogenic transformation are good.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-10-2525
1987-10-01
2022-07-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/10/JV0680102525.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-10-2525&mimeType=html&fmt=ahah

References

  1. Akrigg A., Wilkinson G. W. G., Oram J. D. 1985; The structure of the major immediate early gene of human cytomegalovirus strain AD169. Virus Research 2:107–121
    [Google Scholar]
  2. Ames B.N., Mccann J., Yamasaki E. 1975; Methods for detecting carcinogens and mutagens with the salmonella/mammalian microsome mutagenicity test. Mutation Research 31:347–364
    [Google Scholar]
  3. Aurelian L., Jariwalla R. J., Ts’O P. O. P., Kessler I. T. 1980; Herpes simplex virus type 2 and cervical cancer cells: cells transformed by a viral DNA fragment express the cervical tumor associated antigen AG4. In Viruses in Naturally Occurring Cancers pp 81–99 Essex M., Todaro G., Zur Hausen H. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  4. Bacchetti S., Eveleigh M. J., Muirhead B., Sartori C. S., Huszar D. 1984; Immunological characterisation of herpes simplex virus type 1 and 2 polypeptide(s) involved in viral ribonucleotide reductase activity. Journal of Virology 49:591–593
    [Google Scholar]
  5. Bacchetti S., Eveleigh M. J., Muirhead B. 1986; Identification and separation of the two subunits of the HSV ribonucleotide reductase. Journal of Virology 57:1177–1181
    [Google Scholar]
  6. Bejcek B., Conley A. J. 1986; A transforming plasmid from HSV-2 transformed cells contains rat DNA homologous to the HSV-1 and HSV-2 genomes. Virology 154:41–55
    [Google Scholar]
  7. Boshart M., Gissmann L., Ikenberg H., Kleinheinz A., Scheurlen W., Zur Hausen H. 1984; A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO Journal 3:1151–1157
    [Google Scholar]
  8. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Fleckenstein B., Schaffner W. 1985; A very Strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530
    [Google Scholar]
  9. Boyd A. L., Derge J. G., Hampar B. 1978; Activation of endogenous type C virus in BALB/c mouse cells by herpesvirus DNA. Proceedings of the National Academy of Sciences U.S.A.: 754558–4562
    [Google Scholar]
  10. Boyd A. L., Enquist L., Vande Woude G. F., Hampar B. 1980; Activation of mouse retrovirus by herpes simplex virus type 1 cloned DNA fragments. Virology 103:228–231
    [Google Scholar]
  11. Brandt C. R., Mcdougall J. K., Galloway D. A. 1986; Synergistic interactions between human papilloma virus type-18 sequences, herpes simplex virus infection and chemical carcinogen treatment. In Papillomaviruses, Cancer Cells 5 New York: Cold Spring Harbor Laboratory; in press
    [Google Scholar]
  12. Brandt C. R., Buonaguro F. M., Mcdougall J. K., Galloway D. A. 1987; Plasmid mediated mutagenesis of a cellular gene in transfected eukaryotic cells. Nucleic Acids Research 15:561–573
    [Google Scholar]
  13. Buonaguro F. M., Mcdougall J. K., Galloway D. A. 1987; Characterisation of the integration site of the CMV mtrin a tumor cell line. Virology 156:74–83
    [Google Scholar]
  14. Burns J. C., Murray B. K. 1981; Conversion of herpetic lesions to malignancy by ultraviolet exposure and promoter application. Journal of General Virology 55:305–313
    [Google Scholar]
  15. Büültjens T. E. J., Macnab J. C. M. 1981; Characterisation of rat embryo cells transformed by tsmutants and sheared DNA of herpes simplex virus types 1 and 2 and a derived tumor cell line. Cancer Research 41:2540–2547
    [Google Scholar]
  16. Cairns J. 1978; Cancer. In Science and Society pp 107–108 San Francisco: W. H. Freeman & Co;
    [Google Scholar]
  17. Camacho A., Spear P. G. 1978; Transformation of hamster embryo fibroblasts by a specific fragment of the herpes simplex virus genome. Cell 15:993–1002
    [Google Scholar]
  18. Cameron I. R., Park M., Dutia B.M, Macnab J. C. M. 1985; Herpes simplex virus sequences involved in the initiation of oncogenic morphological transformation of rat cells are not required for maintenance of the transformed state. Journal of General Virology 66:517–527
    [Google Scholar]
  19. Campbell M. E. M., Palfreyman J. w., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a tumour acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology 180:1–19
    [Google Scholar]
  20. Chen M., Dong C., Liu Z., Skinner G. B. R., Hartley C. E. 1986; Efficacy of vaccination with Skinner vaccine towards the prevention of herpes simplex virus induced cervical carcinomas in an experimental mouse model. Vaccine 4:249–252
    [Google Scholar]
  21. Clanton C., Jariwalla R., Krejs C., Rosenthal L. J. 1983; Neoplastic transformation by a cloned human cytomegalovirus DNA fragment uniquely homologous to one of the transforming regions of herpes simplex virus type 2. Proceedings of the National Academy of Sciences U.S.A.: 803826–3830
    [Google Scholar]
  22. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Specific inhibition of herpesvirus ribonucleotide reductase by a monopeptide derived from the carboxy terminus of subunit 2. Nature; London: 321441–442
    [Google Scholar]
  23. Cohen G. H. 1972; Ribonucleotide reductase activity of synchronised KB cells infected with herpes simplex virus. Journal of Virology 9:408–418
    [Google Scholar]
  24. Cohen G. H., Factor M. N., Ponce De Leon M. 1974; Inhibition of herpes simplex virus type 2 replication by thymidine. Journal of Virology 14:20–25
    [Google Scholar]
  25. Crum C. P., Ikenberg H., Richart R. M., Gissmann L. 1984; Human papillomavirus type 16 and early cervical neoplasia. New England Journal of Medicine 310:880–883
    [Google Scholar]
  26. Cuzin R., Rassoulzadegan M., Lemieux L. 1984; Mutagenic control of tumorigenesis: three distinct oncogenes are required for transformation of rat embryo fibroblasts by polyoma virus. In Cancer Cells 2 pp 109–116 Vande Woude G. F., Levine A. J., Topp W. C., Watson J. D. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Davis M. G., Huang E-S. 1985; Nucleotide sequence of a human cytomegalovirus DNA fragment encoding 67 kilodaltons phosphorylated viral protein. Journal of Virology 56:7–11
    [Google Scholar]
  28. Davis M. G., Mar E-C., Wu Y-M., Hauang E.-S. 1984; Mapping and expression of a human cytomegalovirus major viral protein. Journal of Virology 52:129–135
    [Google Scholar]
  29. De Villiers E-M., Gissmann L., Zur Hausen H. 1981; Molecular cloning of viral DNA from human genital warts. Journal of Virology 40:932–935
    [Google Scholar]
  30. Draper K. G., Frink R. J., Devi G. B., Swain M., Galloway D. A., Wagner E. K. 1984; Herpes simplex virus types 1 and 2 homology in the region between 0-58 and 0-68 map units. Journal of Virology 52:615–623
    [Google Scholar]
  31. Duff R., Rapp F. 1971; Oncogenic transformation of hamster embryo cells after exposure to herpes simplex virus type 2. Nature; London: 23348–50
    [Google Scholar]
  32. Duff R., Rapp F. 1973; Oncogenic transformation of hamster embryo cells after exposure to inactivated herpes simplex virus type 1. Journal of Virology 12:209–217
    [Google Scholar]
  33. Dürst M., Gissmann L., Ikenberg H., Zur Hausen H. 1983; A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographical regions. Proceedings of the National Academy oj Sciences U.S.A.: 803812–3815
    [Google Scholar]
  34. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  35. Dutia B. M., Frame M. C., Subak-Sharpe J. H., Clark W. N., Marsden H. S. 1986; Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature; London: 321439–441
    [Google Scholar]
  36. Eglin R. P., Sharp F., Maclean A. B., Macnab J. C. M., Clements J. B. 1981; Detection of RNA complementary to herpes simplex virus DNA in human cervical squamous cell neoplasms. Cancer Research 41:3597–3603
    [Google Scholar]
  37. El-Beik T., Razzaque A., Jariwalla R., Cihlar R. L., Rosenthal L. J. 1986; Multiple transforming regions of human cytomegalovirus DNA. Journal of Virology 60:645–652
    [Google Scholar]
  38. Everett R. D. 1984; Transactivation of transcription by herpes virus products: requirement for two HSV-1 immediate early polypeptides for maximum activity. EMBO Journal 3:3135–3141
    [Google Scholar]
  39. Everett R. D. 1985; Activation of cellular promoters during herpes virus infection of biochemically transformed cells. EMBO Journal 4:1973–1980
    [Google Scholar]
  40. Everett R. D. 1987; The regulation of transcription of viral and cellular genes by herpesvirus immediate early gene products. Anticancer Research in press
    [Google Scholar]
  41. Everett R. D., Dunlop M. 1984; Transactivation of plasmid borne promoters by adenovirus and several herpes group viruses. Nucleic Acids Research 12:5969–5978
    [Google Scholar]
  42. Flanders R. T., Kucera L. S., Raben M., Ricardo M. J.Jr 1985; Immunologic characterisation of herpes simplex virus type 2 antigens ICP10 and ICSP11/12. Virus Research 2:245–260
    [Google Scholar]
  43. Fletcher K. 1986 The role of human cytomegalovirus in transformation and in the development of cervical intraepithelial neoplasia Ph.D. thesis University of Glasgow:
    [Google Scholar]
  44. Fletcher K., Cordiner J. w., Macnab J. C. M. 1986; Detection of sequences that hybridise to human cytomegalovirus DNA in cervical neoplastic tissue. Disease Markers 4:219–229
    [Google Scholar]
  45. Frame M. C., Marsden H. S., Dutia B. M. 1985; The ribonucleotide reductase induced by herpes simplex virus type 1 involves minimally a complex of two polypeptides (136K and 38K). Journal of General Virology 66:1581–1587
    [Google Scholar]
  46. Galloway D. A., Mcdougall J. K. 1981; Transformation of rodent cells by a cloned DNA fragment of herpes simplex virus type 2. Journal of Virology 38:749–760
    [Google Scholar]
  47. Galloway D. A., Mcdougall J. K. 1983; The oncogenic potential of herpes simplex viruses: evidence for a 'hit and run' mechanism. Nature; London: 30221–24
    [Google Scholar]
  48. Galloway D. A., Goldstein L. C., Lewis J. B. 1982; The identification of proteins encoded by a fragment of HSV-2 DNA that has transforming activity. Journal of Virology 42:530–537
    [Google Scholar]
  49. Galloway D. A., Nelson J. A., Mcdougall J. K. 1984; Small fragments of herpesvirus DNA with transforming activity contain insertion sequence-like structures. Proceedings of the National Academy of Sciences U.S.A.: 814736–4740
    [Google Scholar]
  50. Galloway D. A., Buonaguro F. M., Brandt C. R., Mcdougall J. K. 1985; Herpes simplex virus and cytomegalovirus: unconventional DNA tumor viruses. In DNA Tumor Viruses, Cancer Cells 4 pp 355–361 Botcham M., Grodzicker T., Sharp P. A. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Gelmann E., Clanton D. J., Jariwalla R. J., Rosenthal L. J. 1983; Characterisation and localisation of mychomologous sequences in human cytomegalovirus DNA. Proceedings of the National Academy of Sciences U.S.A.: 805107–5111
    [Google Scholar]
  52. Gissmann L., Wolnik L., Ikenberg H., Koldovsky U., Schnürch H. G., Zur Hausen H. 1983; Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proceedings of the National Academy of Sciences U.S.A.: 80560–563
    [Google Scholar]
  53. Gomez-Marquez J., Puga A., Notkins A. L. 1985; Regions of the terminal repetitions of the herpes simplex virus type 1 genome. Journal of Biological Chemistry 260:3490–3495
    [Google Scholar]
  54. Hampar B. 1981; Transformation induced by herpes simplex virus: a potentially novel type of virus-cell interaction. Advances in Cancer Research 35:27–47
    [Google Scholar]
  55. Hampar B., Aaronson S. A., Derge J. G., Chakrabarty M., Showalter S. D., Dunn C. Y. 1976; Activation of an endogenous mouse type C virus by ultraviolet-irradiated herpes simplex virus types 1 and 2. Proceedings of the National Academy of Sciences U.S.A.: 73646–650
    [Google Scholar]
  56. Hayashi Y., Iwasaka T., Smith C. C., Aurelian L., Lewis G. K., Ts’O P. O. P. 1985; Multistep transformation by defined fragments of herpes simplex virus type 2 DNA: oncogenic region and its gene product. Proceedings of the National Academy of Sciences U.S.A.: 828493–8497
    [Google Scholar]
  57. Hayward W. S., Neel B. G., Astrin S. M. 1981; Activation of a cellular onegene by promoter insertion in ALV induced lymphoid leukosis. Nature; London: 290475–480
    [Google Scholar]
  58. Heggie A. D., Wentz W. B., Reagan J. W., Anthony D. D. 1986; Roles of cytomegalovirus and Chlamydia trachomatisin the induction of cervical neoplasia in the mouse. Cancer Research 46:5211–5214
    [Google Scholar]
  59. Heilbronn R., Schlehofer J. R., Yalkinoglu A. O., Zur Hausen H. 1985; Selective DNA amplification induced by carcinogens (initiators): evidence for a role of proteases and DNA polymerase alpha. International Journal of Cancer 36:85–91
    [Google Scholar]
  60. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  61. Holland L. E., Sandri-Goldin R. M., Goldin A. L., Glorioso J. C., Levine M. 1984; Transcriptional and genetic analyses of the herpes simplex virus type 1 genome: map coordinates 0·29–045. Journal of Virology 49:947–959
    [Google Scholar]
  62. Huang E-S., Boldogh I., Baskar J. F., Mar E-C. 1984; The molecular biology of human cytomegalovirus and its relationship to various human cancers. In The Role of Viruses in Human Cancer II pp 169–194 Giraldo G., Beth E. Edited by New York: Elsevier;
    [Google Scholar]
  63. Hunter T. 1984; Oncogenes and proto-oncogenes: how do they differ?. Journal of the National Cancer Institute 73:773–786
    [Google Scholar]
  64. Huszar D., Bacchetti S. 1983; . Is ribonucleotide reductase the transforming function of herpes simplex virus 2 ? Nature; London: 30276–79
    [Google Scholar]
  65. Iwasaka T., Smith C., Aurelian L., Ts’O P. O. P. 1985; The cervical tumor-associated antigen (ICP-10/AG-4) is encoded by the transforming region of the genome of herpes simplex virus type 2. Japanese Journal of Cancer Research 76:946–958
    [Google Scholar]
  66. Jahn G., Knust E., Schmolla H., Sarre T., Nelson J. A., Mcdougall J. K., Fleckenstein B. 1984; Predominant immediate early transcripts of human cytomegalovirus AD169. Journal of Virology 49:363–370
    [Google Scholar]
  67. Jariwalla R. J., Aurelian L., Ts’O P. O. P. 1980; Tumorigenic transformation induced by a specific fragment of DNA from herpes simplex virus type 2. Proceedings of the National Academy of Sciences U.S.A.: 772279–2283
    [Google Scholar]
  68. Jariwalla R. J., Aurelian L., Ts’O P. O. P. 1983; Immortalisation and neoplastic transformation of normal diploid cells by defined cloned DNA fragments of herpes simplex virus type 2. Proceedings of the National Academy of Sciences U.S.A.: 805902–5906
    [Google Scholar]
  69. Jariwalla R. J., Tanczos B., Jones C., Ortiz J., Salimi-Lopez S. 1986; DNA amplification and neoplastic transformation mediated by a herpes simplex DNA fragment containing cell related sequences. Proceedings of the National Academy of Sciences U.S.A.: 831738–1742
    [Google Scholar]
  70. Jones C., Ortiz J., Jariwalla R. J. 1986; Localisation and comparative nucleotide sequence analysis of the transforming domain in herpes simplex virus DNA containing repetitive genetic elements. Proceedings of the National Academy of Sciences U.S.A.: 837855–7859
    [Google Scholar]
  71. Jones K. W., Fenoglio C. M., Shevchuck-Chaban M., Maitland N. J., McDougall J. K. 1979; Detection of herpesvirus 2 mRN A in human cervical biopsies by in situhybridisation. In Oncogenesis and Herpesviruses III pp 917–925 De The G., Henle W., Rapp F. Edited by Lyon: IARC;
    [Google Scholar]
  72. Jones T. R., Hyman R. W. 1983; Specious hybridisation between herpes simplex virus DNA and human cellular DNA. Virology 131:555–560
    [Google Scholar]
  73. Jones T. R., Hyman R. W. 1986; Sequences in the proximal 1RL of herpes simplex virus DNA hybridise to human DNA. Virus Research 4:369–375
    [Google Scholar]
  74. Jones T. R., Parks C. L., Spector D. J., Hyman R. W. 1985; Hybridisation of herpes simplex virus DNA and human ribosomal DNA and RNA. Virology 144:384–397
    [Google Scholar]
  75. Kadonaga J. T., Jones K. A., Tijan R. 1986; Promoter-specific activation of RNA polymerase II transcription by Spl. Trends in Biochemical Sciences 11:20–23
    [Google Scholar]
  76. Kessler L. I. 1976; Human cervical cancer as a venereal disease. Cancer Research 36:783–791
    [Google Scholar]
  77. Kessler L. I. 1977; Venereal factors in human cervical cancer. Cancer 39:1912–1919
    [Google Scholar]
  78. Knipe D. M. 1982; Cell growth transformation by herpes simplex virus. Progress in Medical Virology 28:114–144
    [Google Scholar]
  79. Koszinowski U. H., Keil G. M., Volkmer H., Fibi M. R., Ebeling-Keil A., Münch K. 1986; The 89000 Mrmurine cytomegalovirus immediate early protein activates gene transcription. Journal of Virology 58:59–66
    [Google Scholar]
  80. Kouzarides T., Bankier A. T., Barrell B. G. 1983; Nucleotide sequence of the transforming region of human cytomegalovirus. Molecular Biology and Medicine 1:47–58
    [Google Scholar]
  81. Krebs C. R., Waite M., Jariwalla R., Kucera L. S. 1987; Induction of cellular functions in spontaneously immortalised rat 2 cells transfected with cloned herpes simplex virus type 2 (HSV-2) DNA. Carcinogenesis 8:183–185
    [Google Scholar]
  82. Kreider J. W., Howett M. K., Wolfe S. A., Bartlett G. L., Zaino R. J., Sedlacek T. V., Mortel R. 1985; Morphological transformation in vivoof human uterine cervix with papillomavirus from condylomata acuminata. Nature; London: 317639–641
    [Google Scholar]
  83. Lathangue N. B., Shriver K., Dawson C., Chan W. L. 1984; Herpes simplex virus infection causes the accumulation of a heat-shock protein. EMBO Journal 3:267–277
    [Google Scholar]
  84. Lavi S. 1981; Carcinogen mediated amplification of viral DNA sequences in simian virus 40 transformed Chinese hamster embryo cells. Proceedings of the National Academy of Sciences U.S.A.: 786144–6148
    [Google Scholar]
  85. Lemaster S., Roizman B. 1980; Herpes simplex virus phosphoproteins. II. Characterisation of the virion protein kinase and of the polypeptides phosphorylated in the virion. Journal of Virology 35:798–811
    [Google Scholar]
  86. Lewin B. 1983 In Genes pp. 603–604 New York: John Wiley & Sons;
    [Google Scholar]
  87. Mccance D. J., Campion M. J., Clarkson R. K., Chesters P. M., Jenkins D., Singer A. 1985; Prevalence of human papillomavirus type 16 DNA in cervical intraepithelial neoplasia and invasive carcinoma of the cervix. British Journal of Obstetrics and Gynaecology 92:1101–1105
    [Google Scholar]
  88. Mcdougall J. K., Galloway D. A., Fenoglio C. M. 1980; Cervical carcinoma: detection of herpes simplex virus RNA in cells undergoing neoplastic change. International Journal of Cancer 25:1–9
    [Google Scholar]
  89. Mcdougall J. K., Crum C. P., Fenoglio C. M., Goldstein L. C., Galloway D. A. 1982; Herpesvirus specific RNA and protein in carcinoma of the uterine cervix. Proceedings of the National Academy of Sciences U.S.A.: 793853–3857
    [Google Scholar]
  90. McDougall J. K., Beckmann A. M., Galloway D. A. 1985; The enigma of viral nucleic acids in genital neoplasia. In Viral Etiology of Cervical Cancer pp 199–209 Peto R., Zur Hausen H. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  91. McGeoch D. J., Davison A. J. 1986; Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Research 14:1765–1777
    [Google Scholar]
  92. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  93. Mcknight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  94. Mclauchlan J., Clements J. B. 1983; DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  95. Macnab J. C. M. 1974; Transformation of rat embryo cells by temperature sensitive mutants of herpes simplex virus. Journal of General Virology 24:143–153
    [Google Scholar]
  96. Macnab J. c. M. 1975; Transformed cell lines produced by temperature sensitive mutants of herpes simplex types 1 and 2. In Oncogenesis and Herpesviruses II pp 227–236 De The G., Epstein M. A., Zur Hausen H. Edited by Lyon: IARC;
    [Google Scholar]
  97. Macnab J. C. M. 1976 Transformation studies with herpes simplex virus Ph.D. thesis University of Glasgow:
    [Google Scholar]
  98. Macnab J. C. M. 1979; Tumour production by HSV-2 transformed lines in rats and the varying response to immunosuppression. Journal of General Virology 43:39–56
    [Google Scholar]
  99. Macnab J. C. M., Mcdougall J. K. 1980; Transformation by herpesviruses. In The Human Herpesviruses p. 634 Nahmias A. J., Dowdle W. R., Schinazi R. F. Edited by New York: Elsevier/North-Holland;
    [Google Scholar]
  100. Macnab J. C. M., Visser L., Jamieson A. T., Hay J. 1980; Specific viral antigens in rat cells transformed by herpes simplex virus type 2 and in rat tumours induced by inoculation of transformed cells. Cancer Research 40:2074–2079
    [Google Scholar]
  101. Macnab J. C. M., Orr A., Park M. 1984; Effects of transformation of cells by herpesviruses. Journal of Cellular Biochemistry supplement 8A:84
    [Google Scholar]
  102. Macnab J. C. M., Orr A., Lathangue N. B. 1985a; Cellular proteins expressed in herpes simplex virus transformed cells also accumulate on herpes simplex virus infection. EMBO Journal 4:3223–3228
    [Google Scholar]
  103. Macnab J. C. M., Park M., Cameron I. R., Kitchener H. C., Walkinshaw S. A., Mclauchlan J., Davison M-J., Cordiner J. W., Clements J. B., Subak-Sharpe J. H. 1985b; Possibilities and consequences of virus detection in patients with CIN and cancer. In Cancer of the Uterine Cervix, Cancer Campaign 8 pp 151–160 Grundmann E. Edited by Stuttgart & New York: Fischer-Verlag;
    [Google Scholar]
  104. Macnab J. C. M., Walkinshaw S. A., Cordiner J. W., Clements J. B. 1986; Human papillomavirus in clinically and histologically normal tissue from patients after radical surgery for neoplastic disease. New England Journal of Medicine 315:1052–1058
    [Google Scholar]
  105. Manservigi R., Cassai E., Deiss L. P., Di Luca D., Segala V. 1986; Sequences homologous to two separate transforming regions of herpes simplex virus DNA are linked in two human genital tumors. Virology 155:192–201
    [Google Scholar]
  106. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  107. Matz B., Schlehofer J. R., Zur Hausen H. 1984; Identification of a gene function of herpes simplex virus type 1 essential for amplification of simian virus 40 DNA sequences in transformed hamster cells. Virology 134:328–337
    [Google Scholar]
  108. Matz B., Schlehofer J. R., Zur Hausen H., Huber B., Fanning E. 1985; HSV and chemical carcinogen- induced amplification of SV40 DNA sequences in transformed cells is cell line dependent. International Journal of Cancer 35:521–525
    [Google Scholar]
  109. Meignier B., Norrild B., Thuning C., Warren J., Frenkel N., Nahmias A. J., Rapp F., Roizman B. 1986; Failure to induce cervical cancer in mice by long term frequent vaginal exposure to live or inactivated herpes simplex viruses. International Journal of Cancer 38:387–394
    [Google Scholar]
  110. Meisels A., Fortin R. 1976; Condylomatous lesions of the cervix and vagina. I. Cytologic patterns. Acta cylologica 20:505–509
    [Google Scholar]
  111. Michelson S., Tardy-Panit M., Barzu O. 1984; Properties of a human cytomegalovirus induced protein kinase. Virology 134:259–268
    [Google Scholar]
  112. Minson A. C. 1984; Cell transformation and oncogenesis by herpes simplex virus and human cytomegalovirus. Cancer Surveys 3:91–111
    [Google Scholar]
  113. Minson A. C., Thouless M. E., Eglin R. P., Darby G. 1976; The detection of virus DNA sequences in a herpes type 2 transformed hamster cell line (333-8-9). International Journal of Cancer 17:493–500
    [Google Scholar]
  114. Nahmias A. J., Norrild B. 1980; Oncogenic potential of herpes simplex viruses and their association with cervical neoplasia. In Oncogenic Herpesviruses pp 25–45 Rapp F. Edited by Florida: CRC Press;
    [Google Scholar]
  115. Nelson J. A., Fleckenstein B., Galloway D. A., Mcdougall J. K. 1982; Transformation of NIH 3T3 cells with cloned fragments of human cytomegalovirus strain AD169. Journal of Virology 43:83–91
    [Google Scholar]
  116. Nelson J. A., Fleckenstein B., Jahn G., Galloway D. A., Mcdougall J. K. 1984; Structure of the transforming region of human cytomegalovirus strain AD 169. Journal of Virology 49:109–115
    [Google Scholar]
  117. Notarianni E. L., Preston C. M. 1982; Activation of cellular stress protein genes by herpes simplex virus temperature sensitive mutants which overproduce immediate early polypeptides. Virology 123:113–122
    [Google Scholar]
  118. Notario V., Sukamar S., Santo S. E., Barbacid M. 1984; A common mechanism for the malignant activation of rasoncogenes in hurtian neoplasia and in chemically induced animal tumors. In Cancer Cells 2 pp 425–432 Vande Woude G. F., Levine A. J., Topp W. C., Watson J. D. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  119. O’Hare P., Hayward G. S. 1985; Evidence for a direct role for both the 175000 and 110000 molecular weight immediate early proteins of herpes simplex virus in the transactivation of delayed early promoters. Journal of Virology 53:751–760
    [Google Scholar]
  120. Oram J. D., Downing R. G., Akrigg A., Dollery A. A., Duggleby C. J., Wilkinson G. W. G., Greenaway P. J. 1982; Use of recombinant plasmids to investigate the structure of the human cytomegalovirus genome. Journal of General Virology 59:111–129
    [Google Scholar]
  121. Orth G. 1986; Epidermodysplasia verruciformis: a model for understanding the oncogenicity of human papillomaviruses. In Papillomaviruses pp 157–174 Evered D., Clark S. Edited by New York: John Wiley & Sons;
    [Google Scholar]
  122. Paraskeva C., Brown K. W., Dunn A. R., Gallimore P. H. 1982; Adenovirus type 12-transformed rat embryo brain and rat liver epithelial cell lines: adenovirus type 12 genome content and viral protein expression. Journal of Virology 44:759–764
    [Google Scholar]
  123. Park M. 1983 Studies on herpes simplex virus information in transformed rat cell lines and human cervical carcinoma cells Ph.D. thesis University of Glasgow:
    [Google Scholar]
  124. Park M., Macnab J. C. M. 1983; Induction of a latent herpes simplex virus from a rat tumour initiated by herpes simplex virus-transformed cells. Journal of General Virology 64:755–758
    [Google Scholar]
  125. Park M., Lonsdale D. M., Timbury M. C., Subak-Sharpe J. H., Macnab J. C. M. 1980; Genetic retrieval of viral genome sequences from herpes simplex virus transformed cells. Nature; London: 285412–415
    [Google Scholar]
  126. Park M., Kitchener H. C., Macnab J. C. M. 1983; Detection of herpes simplex virus type 2 DNA restriction fragments in human cervical carcinoma tissue. EMBO Journal 2:1029–1034
    [Google Scholar]
  127. Parks C. L., Jones T.R, Schmickel R. D., Hyman R. W., Spector D. J. 1986; A simple repetitive sequence common to herpes simplex virus type 1 and human ribosomal DNAs. Virology 154:381–388
    [Google Scholar]
  128. Patel R., Chan W. L., Kemp L. M., Lathangue N. B., Latchman D. S. 1986; Isolation of cDNA clones derived from a cellular gene transcriptionally induced by herpes simplex virus. Nucleic Acids Research 14:5629–5640
    [Google Scholar]
  129. Peden K., Mounts P., Hayward G. S. 1982; Homology between mammalian cell DNA sequences and human herpesvirus genomes detected by a hybridisation procedure with high complexity probe. Cell 31:71–80
    [Google Scholar]
  130. Pfister H., Iftner T., Fuchs P. G. 1985; Papillomaviruses from epidermodysplasia verruciformis patients and renal allograft recipients. In Papillomaviruses - Molecular and Clinical Aspects, UCLA Symposium on Molecular and Cellular Biology 32 pp 85–100 Howley P. M., Broker T. R. Edited by New York: Alan R. Liss;
    [Google Scholar]
  131. Pilon L., Royal A., Langelier Y. 1985; Increased mutation frequency after herpes simplex virus type 2 infection in non-permissive XC cells. Journal of General Virology 66:259–265
    [Google Scholar]
  132. Pilon L., Langelier Y., Royal A. 1986; Herpes simplex virus type 2 mutagenesis: characterisation of mutants induced at the hprt locus of non-permissive XC cells. Molecular and Cellular Biology 6:2977–2983
    [Google Scholar]
  133. Prakash S. S., Reeves W. C., Sisson G. R., Brewes M., Godoy J., Bacchetti S., De Britton R. C., Rawls W. E. 1985; Herpes simplex virus type 2 and human papillomavirus type 16 in cervicitis, dysplasia and invasive cervical carcinoma. International. Journal of Cancer 35:5l–57
    [Google Scholar]
  134. Preston C. M. 1979; Control of herpes simplex virus type I mRNA synthesis in cells infected with wild type virus or the temperature sensitive mutant tsK. Journal of Virology 29:275–284
    [Google Scholar]
  135. Preston V. G. 1981; Fine structure mapping of herpes simplex virus type 1 temperature sensitive mutations within the short repeat regions of the genome. Journal of Virology 39:150–161
    [Google Scholar]
  136. Preston V. G., Palfreyman J. W., Duttia B. M. 1984; Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. Journal of General Virology 65:1457–1466
    [Google Scholar]
  137. Puga A., Cantin E. M., Notkins A. L. 1982; Homology between murine and human cellular DNA sequences and the terminal repetition of the S component of herpes simplex virus type 1 DNA. Cell 31:81–87
    [Google Scholar]
  138. Puga A., Gomez-Marquez J., Brayton P. R., Cantin E. M., Long L. K., Barbacid M., Noikins A. L. 1985; The immediate early enhancer element of herpes simplex virus type 1 can replace a regulatory region of the c-Ha- ras1 oncogene required for transformation. Journal of Virology 54:879–881
    [Google Scholar]
  139. Purves F. C., Katan M., Stevely W. S., Leader D. P. 1986; Characteristics of the induction of a new protein kinase in cells infected with herpesviruses. Journal of General Virology 67:1049–1057
    [Google Scholar]
  140. Rapp F., Geder L., Murasko D., Lausch R., Ladda R., Huang E-S., Webber M. 1975; Long term persistence of cytomegalovirus genome in cultured cells of prostatic origin. Journal of Virology 16:982–990
    [Google Scholar]
  141. Rasmussen R. D., Staprans S. I., Shaw S. B., Spector D. H. 1985; Sequences in human cytomegalovirus which hybridise with the avian retrovirus oncogene x-mycare G + C rich and do not hybridise with the human c-mycgene. Molecular and Cellular Biology 5:1525–1530
    [Google Scholar]
  142. Rawls W. E. 1983; Herpes simplex viruses and their role in human cancer. In The Role of HSV in Human Cancer pp 241–255 Roizman B. Edited by New York: Plenum Press;
    [Google Scholar]
  143. Reyes G. R., Lafemina IF., Hayward S. D., Hayward G. S. 1979; Morphological transformation by DNA fragments of human herpesviruses: evidence for two distinct transforming regions in HSV-1 and HSV-2 and lack of correlation with biochemical transfer of the thymidine kinase gene. Cold Spring Harbor Symposia on Quantitative Biology 44:629–641
    [Google Scholar]
  144. Rotkin I. D. 1973; A comparison review of key epidemiological studies in cervical cancer related to current searches for transmissible agents. Cancer Research 33:1353–1367
    [Google Scholar]
  145. Rotola A., Di Luca D., Monini P., Manservigi R., Tognon M., Virgili A., Segala V., Trapella G., Cassai E. 1986; Search for HSV DNA in genital, cerebral and labial tumours. European Journal of Cancer and Clinical Oncology 22:1259–1265
    [Google Scholar]
  146. Rubin G. 1983; Dispersed repetitive DNAs in drosophila. In Mobile Genetic Elements pp 329–361 Shapiro J. A. Edited by New York: Academic Press;
    [Google Scholar]
  147. Russell J., Preston C. M. 1986; An in vitrolatency system for herpes simplex virus type 2. Journal of General Virology 67:397–403
    [Google Scholar]
  148. Saavedra C., Kessous-Elbaz A. 1985; Retention of herpes simplex virus type II sequences in BglII ntransformed cells after cotransfection with a selectable marker. EMBO Journal 4:3419–3426
    [Google Scholar]
  149. Schek N., Bachenheimer S. L. 1985; Degradation of cellular mRNAs induced by a virion associated factor during herpes simplex virus infection of Vero cells. Journal of Virology 55:601–610
    [Google Scholar]
  150. Schimke R. T.editor 1982 Gene Amplification New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  151. Schlehofer J. R., Zur Hausen H. 1982; Induction of mutations within the host genome by partially inactivated herpes simplex virus type 1. Virology 122:471–475
    [Google Scholar]
  152. Schlehofer I. R., Gissmann L., Matz B., Zur Hausen H. 1983; Herpes simplex virus induced amplification of SY40 sequences in transformed Chinese hamster embryo cells. International Journal of Cancer 32:99–103
    [Google Scholar]
  153. Shillitoe E. J., Matney T. S., Conley A. J. 1986; Induction of mutations in bacteria by a fragment of DNA fromherpes simplex virus type 1. Virus Research 6:181–191
    [Google Scholar]
  154. Skinner G. B. R. 1976; Transformation of primary hamster embryo fibroblasts by type 2 herpes simplex virus: evidence for a hit and run mechanism. British Journal of Experimental Pathology 57:361–376
    [Google Scholar]
  155. Skinner G. B. R., Fink C. G., Cowan M., Buchan A., Fuller A., Hartley C. E., Durham J., Wiblin C., Melling J. 1987; Follow-up report on 50 subjects vaccinated against herpes genitalis with Skinner vaccine. Vaccine in press
    [Google Scholar]
  156. Spaete R. R., Mocarski E. S. 1985; Regulation of cytomegalovirus gene expression: a and [ipromoters are transactivated by viral functions in permissive human fibroblasts. Journal of Virology 56:135–143
    [Google Scholar]
  157. Spector D. H., Vacquier J. P. 1983; Human cytomegalovirus (strain AD169) contains sequences related to the avian retrovirus oncogene v-myc. Proceedings of the National Academy of Sciences U.S.A.: 803889–3893
    [Google Scholar]
  158. Spector D. J., Jones T. R., Parks C. L., Deckhut A. M., Hyman R. W. 1987; Hybridisation between a repeated region of herpes simplex virus type 1 DNA containing the sequence [GGC]n and heterodisperse cellular DNA and RNA. Virus Research 7:69–82
    [Google Scholar]
  159. Staprans S. I., Spector D. H. 1986; 2.2-kilobase class of early transcripts encoded by cell-related sequences in human cytomegalovirus strain AD169. Journal of Virology 57:591–602
    [Google Scholar]
  160. Stinski M. F., Roehr T. J. 1985; Activation of the major immediate early gene of human cytomegalovirus by cis- acting elements in the promoter regulatory sequence and by virus specific trans-acting components. Journal of Virology 55:431–441
    [Google Scholar]
  161. Swain M. A., Galloway D. A. 1986; Herpes simplex virus specifies two subunits of ribonucleotide reductase encoded by 3ʹ coterminal transcripts. Journal of Virology 57:802–808
    [Google Scholar]
  162. Tevethia M. J. 1983; Transforming potential of herpes simplex viruses and human cytomegalovirus. In The Role of HSV in Human Cancer pp 257–313 Roizman B. Edited by New York: Plenum Press;
    [Google Scholar]
  163. Thomsen D. R., Stinski M. F. 1981; Cloning of the human cytomegalovirus genome as endonuclease Xbalfragments. Gene 16:207–216
    [Google Scholar]
  164. Van Den Berg F. M., Van Amstel P. J., Walboomers J. M. M. 1985; Construction of rat cell lines that contain potential morphologically transforming regions of the herpes simplex virus type 2 genome. Intervirology 24:199–210
    [Google Scholar]
  165. Vandepol S. B., Holland J. J. 1986; Tumorigenicity of persistently infected tumors in nude mice is a function of both virus and host cell type. Journal of Virology 58:914–920
    [Google Scholar]
  166. Vonka V., Kanka J., Hirsch I., Zavadova H., Kremar M., Suchankova A., Rezacova D., Broucek J., Press M., Domorazkova E., Svoboda B., Havrankova A., Jelinek J. 1984; Prospective study on the relationship between cervical neoplasia and herpes simplex virus type 2. II. Herpes simplex type 2 antibody presence in sera taken at enrolment. International Journal of Cancer 33:61–66
    [Google Scholar]
  167. Walker A. I., Hunt T., Jackson R. J., Anderson C. W. 1985; Double stranded DNA induces the phosphorylation of several proteins including the 90000 mol. wt. heat shock protein in animal cell extracts. EMBO Journal 4:139–145
    [Google Scholar]
  168. Wentz W. B., Reagan J. W., Heggie A. D., Fu Y-S., Anthony D. D. 1981; Induction of uterine cancer with inactivated herpes simplex virus, types 1 and 2. Cancer 48:1783–1790
    [Google Scholar]
  169. Wentz W. B., Heggie A. D., Anthony D. D., Reagan J. W. 1983; Effect of prior immunisation on induction of cervical cancer in mice by herpes simplex virus type 2. Science 222:1128–1129
    [Google Scholar]
  170. Woodruff J. D., Braun L., Cavalieri R., Gupta P., Pass F., Shah K. v. 1980; Immunologic identification of papillomavirus antigen in condyloma tissues from the female genital tract. Obstetrics and Gynecology 56:727–732
    [Google Scholar]
  171. Zur Hausen H. 1982; . Human genital cancer: synergism between two virus infections or synergism between a virus infection and initiating events? Lancet i:1370–1372
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-10-2525
Loading
/content/journal/jgv/10.1099/0022-1317-68-10-2525
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error