1887

Abstract

Summary

The entire DNA sequence of varicella-zoster virus (VZV) was determined using the M13-dideoxynucleotide technology. The genome is variable in size, but the sequence which was obtained comprises 124884 bp. Analysis of the sequence indicated that the genome contains 70 genes distributed about equally between the two DNA strands. The genes are organized compactly, but regions of overlap between protein-coding regions are not extensive. Many of the genes are arranged in 3′-coterminal families, and at least one is spliced. The discerned organization of VZV genes and that deduced for herpes simplex virus type 1 (HSV-1) from published transcript mapping data indicate that these two members of the are very similar in gene layout. Comparisons of the predicted amino acid sequences of VZV proteins with those available for HSV-1 proteins generally suggest evolution from an ancestral genome, and allow the functions of several VZV genes to be deduced, although limited regions where the genomes differ in functional organization were also identified.

Keyword(s): DNA sequence , genes , homology and VZV
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-9-1759
1986-09-01
2022-09-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/9/JV0670091759.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-9-1759&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. I., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  2. Nerk A. J., Sharp P. A. 1978; Spliced early mRNAs of simian virus 40. Proceedings of the National Academy of Sciences, U.S.A 75:1274–1278
    [Google Scholar]
  3. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences, U.S.A. 80:3963–3965
    [Google Scholar]
  4. Blobel G. 1980; Intracellular protein topogenesis. Proceedings of the National Academy of Sciences, U,. S,. A 77:1496–1500
    [Google Scholar]
  5. Blumenthal R. M., Rice P. J., Roberts R. J. 1982; Computer programs for nucleic acid sequence manipulation. Nucleic Acids Research 10:91–101
    [Google Scholar]
  6. Bzik D. J., Fox B. A., Deluca N. A., Person S. 1984; Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. Virology 133:301–314
    [Google Scholar]
  7. Capon D. J., Chen E. Y., Levinson A. D., Seeburg P. H., Goeddel D. V. 1983; Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature, London 302:33–37
    [Google Scholar]
  8. Casey T. A., Ruyechan W. T., Flora M. N., Reinhold W., Straus S. E., Hay J. 1985; Fine mapping and sequencing of a variable segment in the inverted repeat of varicella-zoster virus DNA. Journal of Virology 54:639–642
    [Google Scholar]
  9. Chou J., Roizman B. 1985; Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Cell 41:803–811
    [Google Scholar]
  10. Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C., Chambon P. 1980; Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414
    [Google Scholar]
  11. Costa R. H., Devi B. G., Anderson K. P., Gaylord B. H., Wagner E. K. 1981; Characterization of a major late herpes simplex virus type 1 mRNA. Journal of Virology 38:483–496
    [Google Scholar]
  12. Costa R. H., Draper K. G., Kelly T. J., Wagner E. K. 1984; An unusual spliced herpes simplex virus type 1 transcript with sequence homology to Epstein-Barr virus DNA. Journal of Virology 54:317–328
    [Google Scholar]
  13. Dalrymple M. A., McGeoch D. J., Davison A. J., Preston C. M. 1985; DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Research 13:7865–7879
    [Google Scholar]
  14. Davison A. J. 1983; DNA sequence of the Us component of the varicella-zoster virus genome. EMBO Journal 2:2203–2209
    [Google Scholar]
  15. Davison A. J. 1984; Structure of the genome termini of varicella-zoster virus. Journal of General Virology 65:1969–1977
    [Google Scholar]
  16. Davison A. J., McGeoch D. I. 1986; Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. Journal of General Virology 67:597–611
    [Google Scholar]
  17. Davison A. J., Scott J. E. 1983; Molecular cloning of the varicella-zoster virus genome and derivation of six restriction endonuclease maps. Journal of General Virology 64:1811–1814
    [Google Scholar]
  18. Davison A. J., Scott J. E. 1985; DNA sequence of the major inverted repeat in the varicella-zoster virus genome. Journal of General Virology 66:207–220
    [Google Scholar]
  19. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  20. Davison A. J., Wilkie N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  21. Davison A. J., Waters D. J., Edson C. M. 1985; Identification of the products of a varicella-zoster virus glycoprotein gene. Journal of General Virology 66:2237–2242
    [Google Scholar]
  22. Davison A. I., Edson C. M., Ellis R. W., Forghani B., Gilden D., Grose C., Keller P. M., Vafai A., Wroblewska Z., Yamanishi K. 1986; New common nomenclature for glycoprotein genes of varicella-zoster virus and their glycosylated products. Journal of Virology 57:1195–1197
    [Google Scholar]
  23. Debroy C., Pederson N., Person S. 1985; Nucleotide sequence of a herpes simplex virus type 1 gene that causes cell fusion. Virology 145:36–48
    [Google Scholar]
  24. Devereux I., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  25. Doberson M. J., Jerkofsky M., Greer S. 1976; Enzymatic basis for the selective inhibition of varicella-zoster virus by 5-halogenated analogs of deoxycytidine. Journal of Virology 20:478–486
    [Google Scholar]
  26. Donehower L. A., Huang L., Hager G. L. 1981; Regulatory and coding potential of the mouse mammary tumor virus long terminal redundancy. Journal of Virology 37:226–238
    [Google Scholar]
  27. Draper K. G., Costa R. H., Lee G. T. -Y., Spear P. G., Wagner E. K. 1984; Molecular basis of the glycoprotein-C-negative phenotype of herpes simplex virus type 1 macroplaque strain. Journal of Virology 51:578–585
    [Google Scholar]
  28. Dumas A. M., Geelen J. L. M. C., Maris W., Van Der Noordaa J. 1980; Infectivity and molecular weight of varicella-zoster virus DNA. Journal of General Virology 47:233–235
    [Google Scholar]
  29. Dumas A. M., Geelen J. L. M. C., Weststrate M. W., Wertheim P., Van Der Noordaa J. 1981; Xba I, Pst I and Bgl II restriction endonuclease maps of the two orientations of the varicella-zoster virus genome. Journal of Virology 39:390–400
    [Google Scholar]
  30. Ecker J. R., Hyman R. W. 1982; Varicella-zoster virus DNA exists as two isomers. Proceedings of the National Academy of Sciences, U S. A 79:156–160
    [Google Scholar]
  31. Ellis R. W., Keller P. M., Lowe R. S., Zivin R. A. 1985; Use of a bacterial expression vector to map the varicella-zoster virus major glycoprotein gene, gC. Journal of Virology 53:81–88
    [Google Scholar]
  32. Fitzgerald M., Shenk T. 1981; The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell 24:251–260
    [Google Scholar]
  33. Frink R. J., Eisenberg R., Cohen G., Wagner E. K. 1983; Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C. Journal of Virology 45:634–647
    [Google Scholar]
  34. GAROFF H., Ansorge W. 1981; Improvements of DNA sequencing gels. Analytical Biochemistry 115:450–457
    [Google Scholar]
  35. Gilden D. H., Shtram Y., Friedmann A., Wellish M., Devlin M., Fraser N., Becker Y. 1982; The internal organization of the varicella-zoster virus genome. Journal of General Virology 60:371–374
    [Google Scholar]
  36. Gray C. P., Kaerner H. C. 1984; Sequence of the putative origin of replication in the UL region of herpes simplex virus type 1 ANG DNA. Journal of General Virology 65:2109–2119
    [Google Scholar]
  37. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  38. Joyce C. M., Grindley N. D. F. 1983; Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli . Proceedings of the National Academy of Sciences, U,. S,. A. 80:1830–1834
    [Google Scholar]
  39. Keller P. M., Davison A. J., Lowe R. S., Bennett C. D., Ellis R. W. 1986; Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster virus. Virology 152:181–191
    [Google Scholar]
  40. Kinchington P. R., Reinhold W. C., Casey T. A., Straus S. E., Hay J., Ruyechan W. T. 1985; Inversion and circularization of the varicella-zoster virus genome. Journal of Virology 56:194–200
    [Google Scholar]
  41. Kozak M. 1984; Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Research 12:857–872
    [Google Scholar]
  42. Uumar A., Lindberg U. 1972; Characterization of messenger ribonucleoprotein and messenger RNA from KB cells. Proceedings of the National Academy of Sciences, U.S.A 69:681–685
    [Google Scholar]
  43. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  44. Lopetegui P., Matsunaga Y., Okuno T., Ogino T., Yamanishi K. 1983; Expression of varicella-zoster virus-related antigens in biochemically transformed cells. Journal of General Virology 64:1181–1186
    [Google Scholar]
  45. Ludwig H., Haines H. G., Biswal N., Benyesh-Melnick M. 1972; The characterization of varicella-zoster virus DNA. Journal of General Virology 14:111–114
    [Google Scholar]
  46. Mcgeoch D. J., Davison A. J. 1986a; Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Research 14:1765–1777
    [Google Scholar]
  47. Mcgeoch D. J., Davison A. J. 1986b; DNA sequence of the herpes simplex virus type 1 gene encoding glycoprotein gH, and identification of homologues in the genome of varicella-zoster virus and Epstein-Barr virus. Nucleic Acids Research 14:4281–4292
    [Google Scholar]
  48. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  49. Mcgeoch D. J., Dolan A., Donald S., Brauer D. H. K. 1986a; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Research 14:1727–1745
    [Google Scholar]
  50. Mcgeoch D. J., Dolan A., Frame M. C. 19864; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the exonuclease gene and neighbouring genes. Nucleic Acids Research 14:3435–3448
    [Google Scholar]
  51. Mcknight S. L. 1980; The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Research 8:5949–5964
    [Google Scholar]
  52. McLauchlan J., Clements J. B. 1983; DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  53. Martin J. H., Dohner D. E., Wellinghoff W. J., Gelb L. D. 1982; Restriction endonuclease analysis of varicella-zoster vaccine virus and wild-type DNAs. Journal of Medical Virology 9:69–76
    [Google Scholar]
  54. Messing J. 1979; A multi-purpose cloning system based on the single-stranded DNA bacteriophage M13. Recombinant DNA Technical Bulletin 2:43–48
    [Google Scholar]
  55. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  56. Mishra L., Dohner D. E., Wellinghoff W. J., Gelb L. D. 1984; Physical maps of varicella-zoster virus DNA derived with 11 restriction enzymes. Journal of Virology 50:615–618
    [Google Scholar]
  57. Mount S. M. 1982; A catalogue of splice junction sequences. Nucleic Acids Research 10:459–472
    [Google Scholar]
  58. Murchie M. -J., Mcgeoch D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0.950 to 0.978). Journal of General Virology 62:1–15
    [Google Scholar]
  59. Oakes J. E., Iltis J. P., Hyman R. W., Rapp F. 1977; Analysis by restriction enzyme cleavage of human varicella-zoster virus DNAs. Virology 82:353–361
    [Google Scholar]
  60. Ostrove J. M., Reinhold W., Fan C. -H., Zorn S., Hay J., Straus S. E. 1985; Transcription mapping of the varicella-zoster virus genome. Journal of Virology 56:600–606
    [Google Scholar]
  61. Preston V. G., Fisher F. B. 1984; Identification of the herpes simplex virus type 1 gene encoding the dUTPase. Virology 138:58–68
    [Google Scholar]
  62. Pustell J., Kafatos F. C. 1982; A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Research 10:4765–4782
    [Google Scholar]
  63. Quinn J. P., Mcgeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  64. Richards J. C., Hyman R. W., Rapp F. 1979; Analysis of the DNAs from seven varicella-zoster virus isolates. Journal of Virology 32:812–821
    [Google Scholar]
  65. Rixon F. J., Clements J. B. 1982; Detailed structural analysis of two spliced HSV-1 immediate-early mRNAs. Nucleic Acids Research 10:2241–2256
    [Google Scholar]
  66. Rixon F. J., McGeoch D. J. 1984; A 3′-coterminal family of mRNAs from the herpes simplex virus type 1 short region: two overlapping reading frames encode unrelated polypeptides one of which has a highly reiterated amino acid sequence. Nucleic Acids Research 12:2473–2487
    [Google Scholar]
  67. Roberts T. M., Swanberg S. L., Poteete S., Riedel G., Backman K. 1980; A plasmid cloning vehicle allowing a positive selection for inserted fragments. Gene 12:123–127
    [Google Scholar]
  68. Sanger F., Voulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  69. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  70. Staden R., Mclachlan A. D. 1982; Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10:141–156
    [Google Scholar]
  71. Stow N. D., Davison A. J. 1986; Identification of a varicella-zoster virus origin of DNA replication and itsactivation by herpes simplex virus type 1 gene products. Journal of General Virology 67:1613–1623
    [Google Scholar]
  72. Straus S. E., Aulakh H. S., Ruyechan W. T., Hay J., Casey T. A., Vande Woude G. F., OWENS J., SMITH H. A. 1981; Structure of varicella-zoster virus DNA. Journal of Virology 40:516–525
    [Google Scholar]
  73. Straus S. E., Owens J., Ruyechan W. T., Tariff H. E., Casey T. A., Vande Woude G. F., Hay J. 1982; Molecular cloning and physical mapping of varicella-zoster virus DNA. Proceedings of the National Academy of Sciences, U.S.A 79:993–997
    [Google Scholar]
  74. Straus S. E., Hay J., Smith H., Owens J. 1983; Genome differences among varicella-zoster virus isolates. Journal of General Virology 64:1031–1041
    [Google Scholar]
  75. Tamura T., Noda M., Takano T. 1981; Structure of the baboon endogenous virus genome: nucleotide sequences of the long terminal repeat. Nucleic Acids Research 9:6615–6626
    [Google Scholar]
  76. Taylor P. 1984; A fast homology program for aligning biological sequences. Nucleic Acids Research 12:447–455
    [Google Scholar]
  77. Taylor P. 1986; A computer program for translating DNA sequences into protein. Nucleic Acids Research 14:437–441
    [Google Scholar]
  78. Tomita M., Marchesi V. T. 1975; Amino acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proceedings of the National Academy of Sciences, U.S.A 72:2964–2968
    [Google Scholar]
  79. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  80. Wagner E. K. 1985; Individual HSV transcripts. Characterization of specific genes. In The Herpesviruses vol 3 pp. 45–104 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  81. Watson R. J., Vande Woude G. F. 1982; DNA sequence of an immediate-early gene (IE mRNA-5) of herpes simplex virus type 1. Nucleic Acids Research 10:979–991
    [Google Scholar]
  82. Watson R. J., Sullivan M., Vande Woude G. F. 1981a; Structures of two spliced herpes simplex virus type 1 immediate-early mRNAs which map at the junctions of the unique and reiterated regions of the virus DNAs component. Journal of Virology 37:431–444
    [Google Scholar]
  83. Watson R. J., Umene K., Enquist L. W. 1981b; Reiterated sequences within the intron of an immediate-early gene of herpes simplex virus type 1. Nucleic Acids Research 9:4189–4199
    [Google Scholar]
  84. Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. A. 1985; Cloning, sequencing, and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Molecular and Cellular Biology 5:930–942
    [Google Scholar]
  85. Zweerink H. J., Morton D. H., Stanton L. W., Neff B. J. 1981; Restriction endonuclease analysis of the DNA from varicella-zoster virus: stability of the DNA after passage in vitro . Journal of General Virology 55:207–211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-9-1759
Loading
/content/journal/jgv/10.1099/0022-1317-67-9-1759
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error