1887

Abstract

For some time, the Editors of have sought a format for presenting accounts of advances and notable events in virology, in a broader and more flexible manner than is afforded by the traditional review of a topic in depth. This article represents an experiment in such presentation. Its aim is to look at advances in virus research, and to present brief accounts of the most important and interesting work published within a calendar year. Subject to evaluation of the success of this first essay, an annual feature is envisaged.

Implementation of these fine notions, however, has demanded some compromises. Virology comprises such an awesome range of techniques and objectives, with such a disparate assembly of virus types, that rigorous limits were necessary. Thus, we have confined our attention to animal viruses, and explicitly avoided any pretension to constructing a systematic review of all virology; the idea of selectivity was pre-eminent.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-67-5-813
1986-05-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/67/5/JV0670050813.html?itemId=/content/journal/jgv/10.1099/0022-1317-67-5-813&mimeType=html&fmt=ahah

References

  1. Alwine J. C. 1985; Transient gene expression control: effects of transfected DNA stability and tram- activation by viral early proteins. Molecular and Cellular Biology 5:1034–1042
    [Google Scholar]
  2. Anderson L. J., Hierholzer J. C., Tsou C., Hendry R. M., Fernie B. F., Stone Y., Mcintosh K. 1985; Antigenic characterisation of respiratory syncytial virus strains with monoclonal antibodies. Journal of Infectious Diseases 151:626–633
    [Google Scholar]
  3. Arya S. K., Guo C., Josephs S. F., Wong-Staal F. 1985; Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 229:69–73
    [Google Scholar]
  4. Auperin D. D., Romanowski V., Galinski M., Bishop D. H. L. 1984; Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. Journal of Virology 52:897–904
    [Google Scholar]
  5. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  6. Barrett T., Shrimpton S. B., Russell S. E. H. 1985; Nucleotide sequence of the entire protein coding region of canine distemper polymerase-associated (P) protein mRNA. Virus Research 3:367–372
    [Google Scholar]
  7. Bell J. R., Kinney R. M., Trent D. W., Lenches E. M., Dalgarno L., Strauss J. H. 1985; Amino-terminal amino acid sequences of structural proteins of three flaviviruses. Virology 143:224–229
    [Google Scholar]
  8. Bellini W. J., Englund G., Rozenblatt S., Arnheiter H., Richardson C. D. 1985; Measles virus P gene Codes for two proteins. Journal of Virology 53:908–919
    [Google Scholar]
  9. Benn S., Rutledge R., Folks T., Gold J., Baker L., Mccormick J., Feorino P., Piot P., Quinn T., Martin M. 1985; Genomic heterogeneity of AIDS retroviral isolates from North America and Zaire. Science 230:949951
    [Google Scholar]
  10. Berger S. L., Folk W. L. 1985; Differential activation of RNA polymerase Ill-transcribed genes by the polyomavirus enhancer and the adenovirus E1A products. Nucleic Acids Research 13:1413–1428
    [Google Scholar]
  11. Blomquist M. C., Hunt L. T., Barker W. C. 1984; Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proceedings of the National Academy of Sciences, U.S.A. 81:7363–7367
    [Google Scholar]
  12. Blumberg B., Giorgi C., Roux L., Raju R., Dowling P., Chollet A., Kolakofsky D. 1985; Sequence determination of the Sendai virus HN gene and its comparison to the influenza virus glycoproteins. Cell 41:269–278
    [Google Scholar]
  13. Boeke J. D., Garfinkel D. J., Styles C. A., Fink G. R. 1985; Ty elements transpose through an RNA intermediate. Cell 40:491–500
    [Google Scholar]
  14. Boshart M., Weber F., Jahn G., Dorsch-Haslar K., Fleckenstein B., Schaffner W. 1985; A very Strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530
    [Google Scholar]
  15. Brady J., Khoury G. 1985; Trans activation of the simian virus 40 late transcription unit by T-antigen. Molecular and Cellular Biology 5:1391–1399
    [Google Scholar]
  16. Brady J., Bolen J., Radonovich M., Salzman N., Khoury G. 1984; Stimulation of simian virus 40 late gene expression by simian virus 40 tumor antigen. Proceedings of the National Academy of Sciences, U.S.A 81:2040–2044
    [Google Scholar]
  17. Broome S., Gilbert W. 1985; Rous sarcoma virus encodes a transcriptional activator. Cell 40:537–546
    [Google Scholar]
  18. Brown J. P., Twardzik D. R., Marquadt H., Todaro G. J. 1985; Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. Nature, London 313:491–192
    [Google Scholar]
  19. Callahan P. L., Mizutani S., Colonno R. J. 1985; Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. Proceedings of the National Academy of Sciences, U.S.A 82:732736
    [Google Scholar]
  20. Chesebro B., Race R., Wehrly K., Nishio J., Bloom M., Lechner D., Bergstrom S., Robbins K., Mayer L., Keith J. M., Garon C., Haase A. 1985; Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature, London 315:331–333
    [Google Scholar]
  21. Clare J., Farabaugh P. 1985; Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proceedings of the National Academy of Sciences, U.S.A. 82:2829–2833
    [Google Scholar]
  22. CO M. S., Gaulton G. N., Fields B. N., Greene M. I. 1985; Isolation and biochemical characterization of the mammalian reovirus type 3 cell-surface receptor. Proceedings of the National Academy of Sciences, U.S.A 82:1494–1498
    [Google Scholar]
  23. Collins P. L., Wertz G. W. 1985a; The envelope-associated 22K protein of human respiratory syncytial virus: nucleotide sequence of the mRNA and a related polytranscript. Journal of Virology 54:65–71
    [Google Scholar]
  24. Collins P. L., Wertz G. W. 1985b; Nucleotide sequences of the IB and 1C nonstructural protein mRNAs of human respiratory syncytial virus. Virology 143:442–451
    [Google Scholar]
  25. Collins P. L., Huang Y. T., Wertz G. W. 1984; Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes. Journal of Virology 49:572–578
    [Google Scholar]
  26. Collins P. L., Anderson K., Langer S. L., Wertz G. W. 1985; Correct sequence for the major nucleocapsid protein mRNA of respiratory syncytial virus. Virology 146:69–77
    [Google Scholar]
  27. Curran J. W., Morgan W. M., Hardy A. M., Jaffe H. W., Darrow W. W., Dowdle W. R. 1985; The epidemiology of AIDS: current status and future prospects. Science 229:1352–1357
    [Google Scholar]
  28. Daniel M. D., Letvin N. L., King N. W., Kannagi M., Sehgal P. K., Hunt R. D., Kanki P. J., Essex M., Desrosiers R. C. 1985; Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science 228:1201–1204
    [Google Scholar]
  29. Debroy C., Pederson N., Person S. 1985; Nucleotide sequence of a herpes simplex virus type 1 gene that causes cell fusion. Virology 145:36–48
    [Google Scholar]
  30. Eppstein D. A., Marsh Y. V., Schreiber A. B., Newman S. R., Todaro G. J., Nestor J. J. JR 1985; Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature, Ij)ndon 318:663–665
    [Google Scholar]
  31. Ernst H., Shatkin A. J. 1985; Reovirus hemagglutinin mRNA codes for two polypeptides in overlapping reading frames. Proceedings of the National Academy of Sciences, U.S.A 82:48–52
    [Google Scholar]
  32. Everett R. D. 1984a; Transactivation of transcription by herpes virus products; requirements for two HSV-1 immediate early polypeptides for maximum activity. EMBO Journal 3:3135–3141
    [Google Scholar]
  33. Everett R. D. 1984b; A detailed analysis of an HSV-1 early promoter: sequences involved in trans-activation by viral immediate-early gene products are not early-gene specific. Nucleic Acids Research 12:3037–3056
    [Google Scholar]
  34. Fernie B. F., Dapolito G., Cote P. J. JR, Gerin J. L. 1985; Kinetics of synthesis of respiratory syncytial virus glycoproteins. Journal of General Viology 66:1983–1990
    [Google Scholar]
  35. Furneaux H. M., Perkins K. K., Freyer G. A., Arenas J., Hurwitz J. 1985; Isolation and characterization of two fractions from HeLa cells required for mRNA splicing in vitro . Proceedings of the National Academy of Sciences, U.S.A 82:4351–4355
    [Google Scholar]
  36. GarfinkeL D. J., Boeke J. D., Fink G. R. 1985; Ty element transposition: reverse transcriptase and virus-like particles. Cell 42:507–517
    [Google Scholar]
  37. GaynoR R. B., Feldman L. T., Berk A. J. 1985; Transcription of class III genes activated by immediate early proteins. Science 230:447–450
    [Google Scholar]
  38. Gelman I. H., SilVerstein S. 1985; Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proceedings of the National Academy of Sciences, U.S.A 82:5265–5269
    [Google Scholar]
  39. Giri I., Danos O., Yaniv M. 1985; Genomic structure of the cottontail rabbit (Shope) papillomavirus. Proceedings of the National Academy of Sciences, U.S.A 82:1580–1584
    [Google Scholar]
  40. Gonda M. A., Wong-Staal F., Gallo R. C., Clements J. E., Narayan O., GILDEN R. V. 1985; Sequence homology and morphologic similarity of HTLV-III and visna virus, a pathogenic lentivirus. Science 227:173–177
    [Google Scholar]
  41. Gupta K. C., Kingsbury D. W. 1984; Complete sequences of the intergenic and mRNA start signals in the Sendai virus genome: homologies with the genome of vesicular stomatitis virus. Nucleic Acids Research 12:3829–3841
    [Google Scholar]
  42. Hauber J., Nelbock-Hochstetter P., Feldmann H. 1985; Nucleotide sequence and characteristics of a Ty element from yeast. Nucleic Acids Research 8:2745–2758
    [Google Scholar]
  43. Hay A. J., Wolstenholme A. J., Skehel J. J., Smith M. H. 1985; The molecular basis of the specific antiinfluenza action of amantadine. EMBO Journal 4:3021–3024
    [Google Scholar]
  44. Hennessy K., Fennewald S., Kieff E. 1985; A third viral nuclear protein in lymphoblasts immortalized by Epstein-Barr virus. Proceedings of the National Academy of Sciences, U.S.A 82:5944–5949
    [Google Scholar]
  45. Herrler G., Rott K., Klenk H.-D., Muller H.-P., Shukla A. K., Schauer R. 1985; The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO Journal 4:1503–1506
    [Google Scholar]
  46. Hiebert S. W., Paterson R. G., Lamb R. A. 1985a; Hemagglutinin-neuraminidase protein of the paramyxovirus simian virus 5: nucleotide sequence of the mRNA predicts an N-terminal membrane anchor. Journal of Virology 54:1–5
    [Google Scholar]
  47. Hiebert S. W., Paterson R. G., Lamb R. A. 1985b; Identification and predicted sequence of a previously unrecognized small hydrophobic protein, SH, of the paramyxovirus simian virus 5. Journal of Virology 55:744–751
    [Google Scholar]
  48. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 2-9 A resolution. Science 229:1358–1365
    [Google Scholar]
  49. Hudson G. S., Bankier A. T., Satchwell S. C., Barrell B. G. 1985a; The short unique region of the B95-8 Epstein-Barr virus genome. Virology 147:81–98
    [Google Scholar]
  50. Hudson G. S., Farrell P. J., Barrell B. G. 1985b; Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein-Barr virus B95–8. Journal of Virology 53:528–535
    [Google Scholar]
  51. Hundley F., Biryahwaho B., Gow M., Desselberger U. 1985; Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology 143:88–103
    [Google Scholar]
  52. Ihara T., Akashi H., Bishop D. H. L. 1984; Novel coding strategy (ambisense genomic RNA) revealed by sequence analysis of Punta Toro phlebovirus S RNA. Virology 136:293–306
    [Google Scholar]
  53. Ihara T., Matsuura Y., Bishop D. H. L. 1985; Analyses of the mRNA transcription processes of Punta Toro phlebovirus (Bunyaviridae). Virology 147:317–325
    [Google Scholar]
  54. Jacks T., Varmus H. E. 1985; Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:1237–1242
    [Google Scholar]
  55. Jones K. A., Yamamoto K. R., Tjian R. 1985; Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell 42:559–572
    [Google Scholar]
  56. Kanki P. J., Alroy J., Essex M. 1985a; Isolation of T-lymphotropic retrovirus related to HTLV-III/LAV from wild-caught African green monkeys. Science 230:951–954
    [Google Scholar]
  57. Kanki P. J., Mclane M. F., King N. W. Jr, Letvin N. L., Hunt R. D., Sehgal P., Daniel M. D., Desrosiers R. C. 1985b; Serological identification and characterization of a macaque T-lymphotropic retrovirus closely related to HTLV-III. Science 228:1199–1201
    [Google Scholar]
  58. Keller J. M., Alwine J. C. 1984; Activation of the SV40 late promoter: direct effects of T antigen in the absence of viral DNA replication. Cell 36:381–389
    [Google Scholar]
  59. Kingston R. E., Baldwin A. S., Sharp P. A. 1985; Transcriptional control by oncogenes. Cell 41:3–5
    [Google Scholar]
  60. Krippl B., Ferguson B., Jones N., Rosenberg M., Westphal H. 1985; Mapping of functional domains in adenovirus E1A proteins. Proceedings of the National Academy of Sciences, U.S.A 82:7480–7484
    [Google Scholar]
  61. Kurath G., Leong J. C. 1985; Characterization of infectious hematopoietic necrosis virus mRNA species reveals a nonvirion rhabdovirus protein. Journal of Viology 53:462–468
    [Google Scholar]
  62. Kurath G., Ahren K. G., Pearson G. D., Leong J. C. 1985; Molecular cloning of the six mRNA species of infectious hematopoietic necrosis virus, a fish rhabdovirus, and gene order determination by R–loop mapping. Journal of Virology 53:469–476
    [Google Scholar]
  63. Lai M. M. C., Baric R. S., Makino S., Keck J. G., Egbert J., Leibowitz J. L., Stohlman S. A. 1985; Recombination between nonsegmented RNA genomes of murine coronaviruses. Journal of Virology 56:449456
    [Google Scholar]
  64. Lamb R. A., Zebedee S. L., Richardson C. D. 1985; Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 40:627–633
    [Google Scholar]
  65. Leff T. L., Corden J., Elkaim R., Sassone-Corsi P. 1985; Transcriptional analysis of the adenovirus-5 EIII promoter: absence of sequence specificity for stimulation by Ela gene products. Nucleic Acids Research 13:1209–1221
    [Google Scholar]
  66. Letvin L. N., Daniel M. D., Sehgal P. K., Desrosiers R. C., Hunt R. D., Waldron L. M., Mackey J. J., Schmidt D. K., Chalifoux L. V., King N. W. 1985; Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III. Science 230:71–73
    [Google Scholar]
  67. Lupton S., Levine A. J. 1985; Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Molecular and Cellular Biology 5:2533–2542
    [Google Scholar]
  68. Mcgeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  69. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  70. Mclachlan A. D., Boswell D. R. 1985; Confidence limits for homology in protein or gene sequences: the c-myc oncogene and adenovirus Ela protein. Journal of Molecular Biology 185:39–49
    [Google Scholar]
  71. Mclauchlan J., Gaffney D., Whitton J. L., Clements J. B. 1985; The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3′ termini. Nucleic Acids Research 13:1347–1368
    [Google Scholar]
  72. Mann K. P., Staunton D., Thorley-Lawson D. A. 1985; Epstein-Barr virus-encoded protein found in plasma membranes of transformed cells. Journal of Virology 53:710–720
    [Google Scholar]
  73. Mellor J., Fulton S. M., Dobson M. J., Wilson W., Kingsman S. M., Kingsman A. J. 1985a; A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Tyl. Nature, London 313:243–246
    [Google Scholar]
  74. Mellor J., Malim M. H., Gull K., Tuite M. F., Mccready S., Dibbayawan T., Kingsman S. M., Kingsman A. J. 1985b; Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature, London 318:583–586
    [Google Scholar]
  75. Morrow C. D., Gibbons G. F., Dasgupta A. 1985; The host protein required for in vitro replication of poliovirus is a protein kinase that phosphorylates eukaryotic initiation factor-2. Cell 40:913–921
    [Google Scholar]
  76. Mount S. M., Rubin G. M. 1985; Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Molecular and Cellular Biology 5:1630–1638
    [Google Scholar]
  77. Mueller-Lantzsch N., Lenoir G. M., Sauter M., Takakl K., Bechet J.-M., Kuklik-Roos C., Wunderlich D., Bornkamm G. W. 1985; Identification of the coding region for a second Epstein-Barr virus nuclear antigen (EBNA 2) by transfection of cloned DNA fragments. EMBO Journal 4:1805–1811
    [Google Scholar]
  78. Muesing M. A., Smith D. H., Cabradilla C. D., Benton C. V., Lasky L. A., Capon D. J. 1985; Nucleic acid structure and expression of the human AIDS/Iymphadenopathy retrovirus. Nature, London 313:450–458
    [Google Scholar]
  79. Mufson M. A., Orvell C., Rafnar B., Norrby E. 1985; Two distinct subtypes of human respiratory syncytial virus. Journal of General Virology 66:2111–2124
    [Google Scholar]
  80. Murthy S. C. S., Bhat G. P., Thimmappaya B. 1985; Adenovirus EIIA early promoter: transcriptional control elements and induction by the viral pre-early EIA gene, which appears to be sequence independent. Proceedings of the National Academy of Sciences, U.S.A. 82:2230–2234
    [Google Scholar]
  81. Najarian R., Caput D., Gee W., Potter S. J., Renard A., Merryweather J., Van nest G., Dina D. 1985; Primary structure and gene organization of human hepatitis A virus. Proceedings of the National Academy of Sciences, U.S.A 82:2627–2631
    [Google Scholar]
  82. Oesch B., Westaway D., Walchli M., Mckinley M. P., Kent S. B. H., Aebersold R., Barry R. A., Tempst P., Teplow B. D., Hood L. E. 1985; A cellular gene encodes scrapie PrP27–30 protein. Cel! 40:735–746
    [Google Scholar]
  83. O’Hare P., Hayward G. S. 1985; Evidence for a direct role for both the 175, 000-and 110, 000-molecular-weight immediate-early proteins of herpes simplex virus in the transactivation of delayed-early promoters. Journal of Virology 53:751–760
    [Google Scholar]
  84. Ono M., Toh H., Miyata T., Awaya T. 1985; Nucleotide sequence of the Syrian hamster intracisternal A-particle gene: close evolutionary relationship of type A particle gene to types B and D oncovirus genes. Journal of Virology 55:387–394
    [Google Scholar]
  85. Persson R. H., Bacchetti S., Smiley I. R. 1985; Cells that constitutively express the herpes simplex virus immediate-early protein ICP4 allow efficient activation of viral delayed-early genes in trans. Journal of Virology 54:414–421
    [Google Scholar]
  86. Quinlan M. P., Knipe D. M. 1985; Stimulation of expression of a herpes simplex virus DNA binding protein by two viral proteins. Molecular and Cellular Biology 5:957–963
    [Google Scholar]
  87. Rabson A. B., Martin M. A. 1985; Molecular organization of the AIDS retrovirus. Cell 40:477–480
    [Google Scholar]
  88. Ralston R., Bishop J. M. 1983; The protein products of the myc and myh oncogenes and adenovirus Ela are structurally related. Nature, London 306:803–806
    [Google Scholar]
  89. Ratner L., Haseltine W., Patarca R., Livak K. L., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K., Ivanoff L., Petteway S. R. Jr, Pearson M. L., Lautenberger J. A., Papas T. S., Ghrayeb J., Chang N. T., Gallo C. R., Wong-Staal F. 1985; Complete sequence of the AIDS virus, HTLV-III. Nature, London 313:277–284
    [Google Scholar]
  90. Rawlins R. D., Milman G., Hayward S. D., Hayward G. S. 1985; Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42:859–868
    [Google Scholar]
  91. Reichel P. A., Merrick W. C., Siekierka J., Mathews M. B. 1985; Regulation of a protein synthesis initiation factor by adenovirus virus-associated RNA. Nature, London 313:196–200
    [Google Scholar]
  92. Reisman D., Yates J., Sugden B. 1985; A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Molecular and Cellular Biology 5:1822–1832
    [Google Scholar]
  93. Reisner A. H. 1985; Similarity between the vaccinia virus 19K early protein and epidermal growth factor. Nature, London 313:801–803
    [Google Scholar]
  94. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss H. J. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  95. Richardson C. D., Berkovich A., Rozenblatt S., Bellini W. J. 1985; Use of antibodies directed against synthetic peptides for identifying cDNA clones, establishing reading frames and deducing the gene order of measles virus. Journal of Virology 54:186–193
    [Google Scholar]
  96. Romanowski V., Matsuura Y., Bishop D. H. L. 1985; Complete sequence of the S RNA of lymphocytic choriomeningitis virus (WE strain) compared to that of Pichinde arenavirus. Virus Research 3:101–114
    [Google Scholar]
  97. Rossmann M. G., Arnold E., Erickson W. J., Frankenberger E. A., Griffith J. P., Hecht H.-J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, London 317:145–153
    [Google Scholar]
  98. Rozenblatt S., Eizenberg O, Englund G., Bellini W. J. 1985; Cloning and characterisation of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein and nucleocapsid protein. Journal of Virology 53:691–694
    [Google Scholar]
  99. Russell S. E. H., Clarke D. K., Hoey E. M., Rima B. K., Martin S. J. 1985; cDNA cloning of the messenger RNAs of five genes of canine distemper virus. Journal of General Viology 66:433–444
    [Google Scholar]
  100. Rymo L., Klein G., Ricksten A. 1985; Expression of a second Epstein-Barr virus-determined nuclear antigen in mouse cells after gene transfer with a cloned fragment of the viral genome. Proceedings of the National Academy of Sciences, U.S.A 82:3435–3439
    [Google Scholar]
  101. Sacks W. R., Greene C. C., Aschman D. P., Schaffer P. A. 1985; Herpes simplex virus type 1 ICP27 is an essential regulatory protein. Journal of Virology 55:796–805
    [Google Scholar]
  102. Sagata N., Yasunaga T., Tsuzuku-kawamura J., Ohishi K., Ogawa Y., Ikawa Y. 1985; Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proceedings of the National Academy of Sciences, U,. S,. A 82:677–681
    [Google Scholar]
  103. Saigo K., Kugimiya W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. 1984; Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster . Nature, iMndon 312:659–661
    [Google Scholar]
  104. Sanchez-Pescador R., Power M. D., Barr P. J., Steimer K. S., Stempien M. M., Brown-Shimer S. L., Gee W. W., Renard A., Randolph A., Levy J. A., Dina D., Luciw P. A. 1985; Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 227:484–492
    [Google Scholar]
  105. Sassone-Corsi P., Wildeman A., Chambon P. 1985; A trans-acting factor is responsible for the simian virus 40 enhancer activity in vitro . Nature, London 313:458–463
    [Google Scholar]
  106. Satake M., Coligan J. E., Elango N., Norrby E., Venkatesan S. 1985; Respiratory syncytial virus envelope glycoprotein (G) has a novel structure. Nucleic Acids Research 13:7795–7812
    [Google Scholar]
  107. Schneider R. J., Safer B., Munemitsu S. M., Samuel C. E., Shenk T. 1985; Adenovirus VAI RNA prevents phosphorylation of the eukaryotic initiation factor 2a subunit subsequent to infection. Proceedings of the National Academy of Sciences, V.S.A. 82:4321–4325
    [Google Scholar]
  108. Shaul Y., Rutter W. J., Laub O. 1985; A human hepatitis B viral enhancer element. EMBO Journal 4:427–430
    [Google Scholar]
  109. Shaw G. M., Harper M. E., Hahn B. M., Epstein L. G., Gajdusek D. C., Price B. W., Navia B. A., Petito C. K., O’Hara C. J., Groopman J. E., Cho E.-S., Oleske E. M., Wong-Staal F., Gallo R. C. 1985; HTLV-III infection in brains of children and adults with AIDS encephalopathy. Science 227:177–182
    [Google Scholar]
  110. Shiba T., Saigo K. 1983; Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogaster . Nature, London 302:119–124
    [Google Scholar]
  111. Shimotohno K., Takahashi Y., Shimizu N., Gojobori T., Golde D. W., Chen I. S. Y., Miwa M., Sugimura T. 1985; Complete nucleotide sequence of an infectious clone of human T-cell leukemia virus type II: an open reading frame for the protease gene. Proceedings of the National Academy of Sciences, U.S.A. 82:3101–3105
    [Google Scholar]
  112. Skern T., Sommergruber W., Blaas D., Gruendler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E. 1985; Human rhinovirus 2: complete nucleoltide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Research 13:2111–2126
    [Google Scholar]
  113. Sodroski J., Patarca R., Rosen C., Wong-Staal F., Haseltine W. 1985c; Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229:74–77
    [Google Scholar]
  114. Sodroski J., Rosen C., Wong-Staal F., Salahuddin S. Z., Popovic M., Arya S. K., Gallo R. C., Haseltine W. A. 1985b; Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227:171–173
    [Google Scholar]
  115. Solnick D. 1985; Trans splicing of mRNA precursors. Cell 42:157–164
    [Google Scholar]
  116. Sonigo P., Alizon M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. 1985; Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42:369382
    [Google Scholar]
  117. Starcich B., Ratner L., Josephs S. F., Okamoto T., Gallo R. C., Wong-Staal F. 1985; Characterization of long terminal repeat sequences of HTLV-III. Science 227:538–540
    [Google Scholar]
  118. Stow N. D. 1985; Mutagenesis of a herpes simplex virus origin of DNA replication and its effect on viral interference. Journal of General Virology 66:31–42
    [Google Scholar]
  119. Stroobant P., Rice A. P., Gullick W. J., Cheng D. J., Kerr I. M., Waterfield M. D. 1985; Purification and characterization of vaccinia virus growth factor. Cell 42:383–393
    [Google Scholar]
  120. Sugden B., Marsh K., Yates J. 1985; A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Molecular and Cellular Biology S:410–413
    [Google Scholar]
  121. Swimmer C., Shenk T. 1985; Selection of sequence elements that substitute for the standard AATAAA motif which signal 3′ processing and polyadenylation of late simian virus 40 mRNAs. Nucleic Acids Research 13:8053–8063
    [Google Scholar]
  122. Tognoni A., Cattaneo R., Serfling E., Schaffner W. 1985; A novel expression selection approach allows precise mapping of the hepatitis B virus enhancer. Nucleic Acids Research 13:7457–7472
    [Google Scholar]
  123. Townsend A. R. M., Gotch F. M., Davey J. 1985; Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42:457–467
    [Google Scholar]
  124. Treisman R., Maniatis T. 1985; Simian virus 40 enhancer increases number of RNA polymerase II molecules on linked DNA. Nature, London 315:72–75
    [Google Scholar]
  125. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. 1985; Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17
    [Google Scholar]
  126. Weber F., Schaffner W. 1985; Simian virus 40 enhancer increases RNA polymerase density within the linked gene. Nature, London 315:75–77
    [Google Scholar]
  127. Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. A. 1985; Cloning, sequencing and functional analysis of oriL , a herpes simplex virus type 1 origin of DNA synthesis. Molecular and Cellular Biology 5:930–942
    [Google Scholar]
  128. Westaway E. G., Brinton M. A., Gaidamovich S. Y., Horzinek M. C., Igarashi A., Kaariainen L., Lvov D. K., Porterfield J. S., Russell P. K., Trent D. W. 1985; Flaviviridae. Intervirology 24:183–192
    [Google Scholar]
  129. Wong-Staal F., Shaw G. M., Salahuddin S. Z., Popovic M., Markham P., Redfield R., GALLO R. C. 1985; Genomic diversity of human T-lymphotropic virus type III (HTLV-III). Science 229:759–762
    [Google Scholar]
  130. Yates J., Warren N., Reisman D., Sugden B. 1984; A cis- acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proceedings of the National Academy of Sciences, U.S.A. 81:3806–3810
    [Google Scholar]
  131. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, London 313:812–815
    [Google Scholar]
  132. YewdelL J. W., Bennink J. R., Smith G. L., Moss B. 1985; Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences, U.S.A 82:1785–1789
    [Google Scholar]
  133. Yoshinaka Y., Katoh I., Copeland T. D., Oroszlan S. 1985; Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proceedings of the National Academy of Sciences, U.S.A. 82:1618–1622
    [Google Scholar]
  134. Zebedee S. L., Richardson C. D., Lamb R. A. 1985; Characterization of the influenza virus M2 integral membrane protein and expression at the infected-cell surface from cloned cDNA. Journal of Virology 56502–511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-67-5-813
Loading
/content/journal/jgv/10.1099/0022-1317-67-5-813
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error