1887

Abstract

Moloney murine sarcoma virus (Mo-MuSV) was one of the most widely studied mammalian retroviruses because it had acquired the cellular sequence called (Van Beveren ., 1981; Frankel & Fischinger, 1976), one of the first oncogenes identified. But difficulties with the low level of expression of the viral (v-) protein and apparent lack of cellular (c-) expression have decreased interest in Mo-MuSV. However, a variant of Mo-MuSV derived by mutagenesis and biological selection, ts110, clearly produces higher levels of a v- protein. The purpose of this review is to summarize important findings and properties of this system. Briefly, proteins are produced in easily detectable amounts in cells infected with ts110 Mo-MuSV or in wild-type revertants derived from ts110 virus-infected cells. The ts110 mutant virus exhibits two conditional defects. One defect affects the production of the mRNA for the protein and the other affects the stability of the protein and its associated kinase function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-66-9-1845
1985-09-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/66/9/JV0660091845.html?itemId=/content/journal/jgv/10.1099/0022-1317-66-9-1845&mimeType=html&fmt=ahah

References

  1. Aaronson S. A., Rowe W. P. 1970; Nonproducer of murine sarcoma virus transformed BALB/3T3 cells. Virology 42:9–19
    [Google Scholar]
  2. Ball J. K., McCarter J. A., Sunderland S. M. 1973; Evidence for helper independent murine sarcoma virus. I. Segregation of replication-defective viruses. Virology 56:268–284
    [Google Scholar]
  3. Blair D. O., Hull M. A., Finch E. A. 1979; The isolation and preliminary characterization of temperature-sensitive transformation mutants of Moloney murine sarcoma virus. Virology 95:303–316
    [Google Scholar]
  4. Blair D. G., Mcclements W. L., Oskarsson M. K., Fischinger P. J., Vande Woude G. F. 1980; Biological activity of cloned Moloney sarcoma virus DNA: terminally redundant sequences may enhance transformation efficiency. Proceedings of the National Academy of Sciences, U. S. A 77:3504–3508
    [Google Scholar]
  5. Canaani E., Dreazen O., KlaR A., Rechavi G., Ram D., Cohen J. B., Givol D. 1983; Activation of the c-mos oncogene in a mouse plasmacytoma by insertion of an endogenous intracisternal A-particle genome. Biochemistry 80:7118–7122
    [Google Scholar]
  6. Collett M. S., Erikson R. L. 1978; Protein kinase activity associated with the avian sarcoma virus src gene product. Proceedings of the National Academy of Sciences, U. S. A 75:2021–2024
    [Google Scholar]
  7. Donoghue D. J., Sharp P. J., Weinberg R. A. 1979; Comparative study of different isolates of murine sarcoma virus. Journal of Virology 32:1015–1027
    [Google Scholar]
  8. Frankel A. E., Fischinger P. J. 1976; Nucleotide sequences in mouse DNA and RNA specific for Moloney sarcoma virus. Proceedings of the National Academy of Sciences, U.S.A 73:3705–3709
    [Google Scholar]
  9. Gallick G. E., Arlinghaus R. B. 1984; Incorporation of lipids into variants of Moloney sarcoma virus which produce gag-mos fusion proteins. Virology 133:228–232
    [Google Scholar]
  10. Gallick G. E., Hamelin R., Maxwell S., Duyka D., Arlinghaus R. B. 1984; The gag-mos hybrid protein of tsl 10 Moloney murine sarcoma virus: variation of gene expression with temperature. Virology 138:366–374
    [Google Scholar]
  11. Gallick G. E., Sparrow J. T., Singh B., Maxwell S. A., ST Anker L. H., Arlinghaus R. B. 1985; Recognition of mos-related proteins with an antiserum to a peptide of the v-mos gene product. Journal of General Virology 66:945–955
    [Google Scholar]
  12. Gattoni S., Kirschmeier P., Weinstein I. B., Escobedo J., Dina D. 1982; Cellular Moloney murine sarcoma (cmos) sequences are hypermethylated and transcriptionally silent in normal and transformed rodent cells. Molecular and Cellular Biology 2:42–51
    [Google Scholar]
  13. Hamelin R., Brizzard B. L., Nash M. A., Murphy E. C. Jr, Arlinghvus R. B. 1985; Temperature-sensitive viral RNA expression in tsl 10 Moloney murine sarcoma virus-infected cells. Journal of Virology 53:616–623
    [Google Scholar]
  14. Horn J. P., Wood T. G., Blair D. G., Arlinghaus R. B. 1980; Partial characterization of a Moloney murine sarcoma virus 85000-Da polypeptide whose expression correlates with the transformed phenotype in cells infected with a temperature-sensitive mutant virus. Virology 105:516–525
    [Google Scholar]
  15. Horn J. P., Wood T. G., Murphy E. C. Jr, Blair D. G., Arlinghaus R. B. 1981; A selective temperature-sensitive defect in viral RNA expression in cells infected with a ts transformation mutant of murine sarcoma virus. Cell 25:37–46
    [Google Scholar]
  16. Junghans R., Murphy E. C. Jr, Arlinghaus R. B. 1982; Electron microscopic analysis of ts110 Moloney mouse sarcoma virus: a variant of wild type virus with two RNAs containing large deletions. Journal of Molecular Biology 161:229–255
    [Google Scholar]
  17. Kloetzer W. S., Arlinghaus R. B. 1982; Binding of retrovirus-associated protein kinase and proteins to Staphylococcus aureus. Journal of Genera! Virology 60:365–370
    [Google Scholar]
  18. Kloetzer W. S., Maxwell S. A., Arlinghaus R. B. 1983; P85gag−mos encoded by ts110 Moloney murine sarcoma virus has an associated protein kinase activity. Proceedings of the National Academy of Sciences, U.S.A 80:412–416
    [Google Scholar]
  19. Kloetzer W. S., Maxwell S. A., Arlinghaus R. B. 1984; Further characterization of the P85gag–mos-associated protein kinase activity. Virology 138:143–155
    [Google Scholar]
  20. Konarska M. M., Grabowski P. J., Padgett R. A., Sharp P. A. 1985; Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature, London 313:552–557
    [Google Scholar]
  21. Maxwell S. A., Arlinghaus R. B. 1985; Serine kinase activity associated with Moloney mouse sarcoma virus-124-encoded p37mos. Virology 143:321–333
    [Google Scholar]
  22. Moloney J. B. 1966; Biological studies on a lymphoid-leukemia virus extracted from sarcoma 37. I. Origin and introductory investigations. Journal of the National Cancer Institute 24:933–951
    [Google Scholar]
  23. Muller R., Slamon D., Tremblay J., Cline M., Verma I. M. 1982; Differential expression of cellular oncogenes during pre- and postnatal development of the mouse. Nature, London 299:640–644
    [Google Scholar]
  24. Murphy E. C. Jr, Arlinghaus R. B. 1982; Comparative tryptic peptide analysis of candidate P85 gag−mos of ts110 Moloney murine sarcoma virus and P38-P23 mos gene-related proteins of wild-type virus. Virology 121:109–119
    [Google Scholar]
  25. Nash M., Brown N. V., Wong J. L., Arlinghaus R. B., Murphy E. C. Jr 1984; SI nuclease mapping of viral RNAs from a temperature-sensitive transformation mutant of murine sarcoma virus. Journal of Virology 50:478–488
    [Google Scholar]
  26. Nash M., Brizzard B., Wong J., Murphy E. C. Jr 1985; MuSV tsllO RNA transcripts: origin from a single proviral DNA and the sequence of the gag-mos junctions in both the precursor and spliced viral RNAs. Journal of Virology (in press)
    [Google Scholar]
  27. Oskarsson M., Mcclements W. L., Blair D. G., Maizel J. V., Vande Woude G. F. 1980; Properties of a normal mouse cell DNA sequence (sarc) homologous to the src sequence of Moloney sarcoma virus. Science 207:1222–1224
    [Google Scholar]
  28. Papkoff J., Verma I. M., Hunter T. 1982; Detection of a transforming gene product of Moloney murine sarcoma virus in transformed cells. Cell 29:417–426
    [Google Scholar]
  29. Ruskin B., Krainer A. R., ManiaTIS T., Green M. R. 1984; Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38:317–331
    [Google Scholar]
  30. Scolnick E. M., Howk R. S., Anesowicz A., Peebles P., Sher C. D., Parks W. P. 1975; Separation of sarcoma virus-specific and leukemia virus-specific genetic sequences of Moloney sarcoma virus. Proceedings of the National Academy of Sciences, U.S.A 72:4650–4654
    [Google Scholar]
  31. Stanker L. H., Horn J. P., Gallick G. E., Kloetzer W. S., Murphy E. C. Jr, Blair D. G., Arlinghaus R. B. 1983a; gag -mos polyproteins encoded by variants of the Moloney strain of mouse sarcoma virus. Virology 125:336–347
    [Google Scholar]
  32. Stanker L. H., Gallick G. E., Kloetzer W. S., Murphy E. C. Jr, Arlinghaus R. B. 1983b; P85: a gag moS polyprotein encoded by tsllO Moloney murine sarcoma virus. Journal of Virology 45:1183–1189
    [Google Scholar]
  33. Stanker L. H., Gallick G. E., Horn J. P., Arlinghaus R. B. 1983c; P85gag−mos encoded by tsllO Moloney murine sarcoma virus: rapid turnover at the restrictive temperature. Journal of General Virology 64:2203–2211
    [Google Scholar]
  34. Van Beveren C., Galleshaw J. A., Jonas V., Bern A. J. M., Doolittle R. F., Donoghue D. J., Verma I. M. 1981a; Nucleotide sequences and formation of the transforming gene of a mouse sarcoma virus. Nature, London 289:258–262
    [Google Scholar]
  35. Van Beveren C., Vanstraaten F., Galleshaw J. A., Verma I. M. 1981; Nucleotide sequence of the genome of a murine sarcoma virus. Cell 27:91–108
    [Google Scholar]
  36. Vande Woude G. F., Oskarsson M., Enquist L. W., Nomura S., Sullivan M., Fischinger P. J. 1979; Cloning of integrated Moloney sarcoma proviral DNA sequences in bacteriophage. Proceedings of the National Academy of Sciences, U.S.A 76:4464–4468
    [Google Scholar]
  37. Weiss R., Teich N., Varmus H., Coffin J. (editors) 1982 RNA Tumor Viruses: Molecular Biology of Tumor Viruses 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-66-9-1845
Loading
/content/journal/jgv/10.1099/0022-1317-66-9-1845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error