1887

Abstract

SUMMARY

The structure and sites of integration of proviral DNA were studied in 19 clonally related Kirsten murine sarcoma virus-transformed non-producer NIH/3T3 cell lines. The majority of these cell lines contained a single provirus, inserted colinearly with respect to unintegrated linear viral DNA, and lacking detectable methylation at I/II sites. Although all proviruses were located at distinct integration sites in the host cell genome, the possible existence of similarities between some adjacent host flanking sequences, suggested from restriction mapping data, could not be ruled out. In three phenotypically reverted cell lines no change in either proviral DNA or adjacent host flanking sequences was detectable. In addition, the revertant proviruses lacked detectable methylation at I/II sites. These findings suggest that changes in cellular function(s) may be responsible for loss of transformed phenotype in these cells.

Keyword(s): integration , KiMSV , mouse cells and provirus
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-2-309
1984-02-01
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/2/JV0650020309.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-2-309&mimeType=html&fmt=ahah

References

  1. Anderson G. R., Robbins K. C. 1976; Rat sequences of the Kirsten and Harvey murine sarcoma virus genomes: nature, origin and expression in rat tumor RNA. Journal of Virology 17:335–351
    [Google Scholar]
  2. Avery R. J., Norton J. D., Jones J. S., Burke D. C., Morris A. G. 1980; Interferon inhibits transformation by murine sarcoma virus before integration of the provirus. Nature, London 288:93–95
    [Google Scholar]
  3. Bacheler L. T., Fan H. 1979; Multiple integration sites for Moloney murine leukemia virus in productively infected murine fibroblasts. Journal of Virology 30:657–667
    [Google Scholar]
  4. Bacheler L., Fan H. 1981; Isolation of recombinant clones carrying complete integrated proviruses of Moloney murine leukemia virus. Journal of Virology 37:181–190
    [Google Scholar]
  5. Clewley J. P., Norton J. D., Avery R. J. 1983; Biochemical characterization of a deleted Kirsten sarcoma virus genome. Archives of Virology (in press)
    [Google Scholar]
  6. Cohen J. C., Murphey-Corb M. 1983; Targeted integration of baboon endogenous virus in the BEVI locus on human chromosome 6. Nature, London 301:129–132
    [Google Scholar]
  7. Courtney M. G., Elder P. K., Steffen D. L., Getz M. J. 1982; Evidence for an early evolutionary origin and locus polymorphism of mouse VL30 DNA sequences. Journal of Virology 43:511–518
    [Google Scholar]
  8. Doerfler W. 1981; DNA methylation-a regulatory signal in eukaryotic gene expression. Journal of General Virology 57:1–20
    [Google Scholar]
  9. Ellis R. W., De Feo D., Shih T. Y., Gonda M. A., Young H. A., Tsuchida N., Lowy D. R., Scolnick E. M. 1981; The p21 genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature, London 292:506–511
    [Google Scholar]
  10. Guntaka R. V., Rao P. Y., Mitsialis S. A., Katz R. 1980; Modification of avian sarcoma proviral DNA sequences in non-permissive and XC cells but not in permissive chicken cells. Journal of Virology 34:569–572
    [Google Scholar]
  11. Hoffmann J. W., Steffen D., Gusella J., Tabin C., Bird S., Cowing D., Weinberg R. A. 1982; DNA methylation affecting the expression of murine leukemia proviruses. Journal of Virology 44:144–157
    [Google Scholar]
  12. Hughes S. H., Shank P. R., Spector D. H., Rung H. J., Bishop J. M., Varmus H. E., Vogt P. K., Breitman M. L. 1978; Proviruses of avian sarcoma virus are terminally redundant, coextensive with unintegrated linear DNA, and integrated at many sites. Cell 15:1397–1410
    [Google Scholar]
  13. Kirsten W. H., Mayer L. H. 1967; Morphological responses to a murine erythroblastosis virus. Journal of the National Cancer Institute 39:311–319
    [Google Scholar]
  14. Lerner T. L., Salka A. M., Hanafusa H. 1981; Integration of Rous sarcoma virus DNA into chicken embryo fibroblasts: no preferred acceptor site in the DNA of clones of singly infected transformed chicken cells. Journal of Virology 40:421–430
    [Google Scholar]
  15. Montandon P. E., Montandon F., Fan H. 1982; Methylation state and DNAase I sensitivity of chromatin containing Moloney murine leukemia virus in exogenously infected mouse cells. Journal of Virology 44:475–486
    [Google Scholar]
  16. Morris A., Clegg C., Jones J., Rodgers B., Avery R. J. 1980; The isolation and characterization of a clonally related series of murine retrovirus-infected mouse cells. Journal of General Virology 49:105–113
    [Google Scholar]
  17. Norton J. D., Avery R. J. 1982; Genetic organization and cloning of Kirsten murine sarcoma virus DNA. Biochemical and Biophysical Research Communications 108:1631–1637
    [Google Scholar]
  18. Norton J. D., Carter A. T., Avery R. J. 1982; Restriction endonuclease mapping of unintegrated proviral DNA of Kirsten murine sarcoma virus. Journal of General Virology 58:95–106
    [Google Scholar]
  19. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  20. Shih T. Y., Young H. A. Coffin M. J., Scolnick E. M. 1978; Physical map of Kirsten sarcoma virus genome as determined by fingerprinting RNase T1-resistant oligonucleotides. Journal of Virology 25:238–252
    [Google Scholar]
  21. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  22. Steffen D., Weinberg R. A. 1978; The integrated genome of murine leukemia virus. Cell 15:1003–1010
    [Google Scholar]
  23. Steffen D. L., Mural R., Cowing D., Mielcarz J., Young J., Roblin R. 1982; Most of the MLV sequences in the DNA of NIH/Swiss mice consist of two closely related proviruses, each repeated several times. Journal of Virology 43:127–135
    [Google Scholar]
  24. Stephenson J. R., Reynolds R. K., Aaronson S. A. 1973; Characterization of morphological revertants of murine and avian sarcoma virus-transformed cells. Journal of Virology 11:218–222
    [Google Scholar]
  25. Thomas M., Davis R. W. 1975; Studies on the cleavage of bacteriophage lambda DNA with Eco RI restriction endonuclease. Journal of Molecular Biology 91:315–328
    [Google Scholar]
  26. Trainor C. D., Reitz M. S. Jr 1979; Loss of proviral DNA sequences in a revertant of Kirsten sarcoma virus-transformed murine fibroblasts. Journal of General Virology 44:245–249
    [Google Scholar]
  27. Tsuchida N., Kominami R., Hatanaka M., Uesugi S. 1981; Identification of unintegrated forms of Kirsten murine sarcoma viral DNA and restriction endonuclease cleavage map of linear DNA. Journal of Virology 38:797–803
    [Google Scholar]
  28. Tsuchida N., Ryder T., Ohtsubo E. 1982; Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 217:937–939
    [Google Scholar]
  29. Van Beveren C., Rands E., Chattopadhyay S. K., Lowy D. R., Verma I. M. 1982; Long terminal repeat of murine retroviral DNAs: sequence analysis, host-proviral junctions, and preintegration site. Journal of Virology 41:542–556
    [Google Scholar]
  30. Van Der Ploeg L. H. T., Flavell R. A. 1980; DNA methylation in the human globin locus in erythroid and nonerythroid tissues. Cell 21:97–108
    [Google Scholar]
  31. Varmus H. E. 1982; Form and function of retroviral proviruses. Science 216:812–820
    [Google Scholar]
  32. Varmus H., Swanstrom R. 1982; Replication of retroviruses. In The Molecular Biology of RNA Tumor Viruses pp 369–512 Edited by Weiss R. A., Teich N. M., Varmus H. E., Coffin J. M. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Weinberg R. A., Steffen D. L. 1981; Regulation of expression of the integrated retrovirus genome. Journal of General Virology 54:1–8
    [Google Scholar]
  34. Wellauer P. K., Reeder R. H., Carroll D., Brown D. D., Deutch A., Higashinakagawa T., Dawid I. B. 1974; Amplified ribosomal DNA from Xenopus laevis has heterogeneous spacer lengths. Proceedings of the National Academy of Sciences, U. S. A. 71:2823–2827
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-2-309
Loading
/content/journal/jgv/10.1099/0022-1317-65-2-309
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error