1887

Abstract

SUMMARY

Administration of the protease inhibitors, ε-aminocaproic acid or aprotinins, to mice infected with mouse-adapted influenza virus strain A/PR/8/34 (H0N1) and A/Aichi/2/68 (H3N2) reduced virus replication in the lungs. Up to 100-fold reduction of virus titre and virus-induced neuraminidase activity were revealed in mouse lungs under protease inhibitor treatment. As a result, drug-treated mice rapidly cleared the virus from their lungs. The predominant synthesis was of non-infectious virions with uncleaved haemagglutinin in the lungs of drug-treated mice, in contrast to the production of highly infectious virions with proteolytically cleaved haemagglutinin in untreated mice. These observations suggest that protease inhibitors suppress influenza virus replication in mouse lungs due to prevention of haemagglutinin cleavage and virus proteolytic activation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-1-191
1984-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/1/JV0650010191.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-1-191&mimeType=html&fmt=ahah

References

  1. Alkjaersig N., Fletchner A. P., Sherry S. 1959; є-Aminocaproic acid, an inhibitor of plasminogen activation. Journal of Biological Chemistry 234:832–837
    [Google Scholar]
  2. Bosch F. X., Orlich M., Klenk H.-D., Rott R. 1979; The structure of the hemagglutinin, a determinant for the pathogenicity of influenza viruses. Virology 95:197–207
    [Google Scholar]
  3. Bosch F. X., Garten W., Klenk H.-D., Rott R. 1981; Proteolytic cleavage of influenza virus hemagglutinin. Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology 113:725–735
    [Google Scholar]
  4. Brockway W. J., Castellino F. J. 1971; The mechanism of the inhibition of plasmin activity by є-aminocaproic acid. Journal of Biological Chemistry 246:4641–4647
    [Google Scholar]
  5. Chang E. H., Friedman R. M. 1977; A large glycoprotein of Moloney leukemia virus derived from interferon-treated cells. Biochemical and Biophysical Research Communications 77:392–398
    [Google Scholar]
  6. Estes M. K., Graham D. Y., Mason B. B. 1981; Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. Journal of Virology 39:879–888
    [Google Scholar]
  7. Homma M., Ohuchi M. 1973; Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and tissue culture cells. Journal of Virology 12:1457–1465
    [Google Scholar]
  8. Ichihashi Y., Oie M. 1982; Proteolytic activation of vaccinia virus for the penetration phase of infection. Virology 116:297–305
    [Google Scholar]
  9. Kilbourne E. D., McGregor S., Easterday B. C. 1979; Hemagglutinin mutants of swine influenza virus differing in replication characteristics in their natural host. Infection and Immunity 26:197–201
    [Google Scholar]
  10. Klenk H.-D., Rott R., Becht H. 1972; On the structure of the influenza virus envelope. Virology 47:579–591
    [Google Scholar]
  11. Klenk H.-D., Rott R., Orlich M., Blodorn J. 1975; Activation of influenza A viruses by trypsin treatment. Virology 68:426–439
    [Google Scholar]
  12. Klenk H.-D., Rott R., Orlich M. 1977; Further studies on the activation of influenza virus by proteolytic cleavage of the haemagglutinin. Journal of General Virology 36:151–161
    [Google Scholar]
  13. Laver W. G. 1971; Separation of two polypeptide chains from the hemagglutinin subunit of influenza virus. Virology 45:275–288
    [Google Scholar]
  14. Lazarowitz S. G., Choppin P. W. 1975; Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68:440–454
    [Google Scholar]
  15. Lazarowitz S. G., Compans R. W., Choppin P. W. 1971; Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes. Virology 46:830–843
    [Google Scholar]
  16. Lazarowitz S. G., Compans R. W., Choppin P. W. 1973a; Proteolytic cleavage of the hemagglutinin polypeptide of influenza virus. Function of the uncleaved polypeptide HA. Virology 52:199–212
    [Google Scholar]
  17. Lazarowitz S. G., Goldberg A. R., Choppin P. W. 1973b; Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56:172–180
    [Google Scholar]
  18. Mashkowsky M. D. (editor) 1977; Contrycal and Gordox. In Medicinal Remedies vol II: pp 39–40 Moscow: Medicine;
    [Google Scholar]
  19. Nagai Y., Klenk H.-D. 1977; Activation of precursor to both glycoproteins of NDV by proteolytic cleavage. Virology 77:125–134
    [Google Scholar]
  20. Nagai Y., Klenk H.-D., Rott R. 1976; Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 72:494–508
    [Google Scholar]
  21. Nakajima S., Sugiura A. 1980; Neurovirulence of influenza virus in mice. II. Mechanism of virulence as studied in a neuroblastoma cell line. Virology 101:450–457
    [Google Scholar]
  22. Otsuki K., Tsubokura M. 1981; Plaque formation by avian infectious bronchitis virus in primary chick embryo fibroblast cells in the presence of trypsin. Archives of Virology 70:315–320
    [Google Scholar]
  23. Pitha P. M., Wivel N. A., Fernie B. F., Harper H. P. 1978; Effect of interferon on murine leukaemia virus infection. IV. Formation of non-infectious virus in chronically infected cells. Journal of General Virology 42:467–480
    [Google Scholar]
  24. Pitha P. M., Fernie B., Maldarelli F., Hattman T., Wivel N. A. 1980; Effect of interferon on mouse leukaemia virus (MuLV). V. Abnormal proteins in virions of Rauscher MuLV produced in the presence of interferon. Journal of General Virology 46:97–110
    [Google Scholar]
  25. Rott R., Reinacher M., Orlich M., Klenk H.-D. 1980; Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorion allantoic membrane of chicken embryo. Archives of Virology 65:123–135
    [Google Scholar]
  26. Rubin D. H., Fields B. N. 1980; The molecular basis of reovirus virulence: the role of the M2 gene. Journal of Experimental Medicine 152:853–868
    [Google Scholar]
  27. Scheid A., Choppin P. W. 1974; Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57:475–490
    [Google Scholar]
  28. Stanley P., Haslam E. A. 1971; The polypeptides of influenza virus. V. Localisation of polypeptides in the virion by iodination techniques. Virology 46:764–773
    [Google Scholar]
  29. Stanley P., Gandhi S. S., White D. O. 1973; The polypeptides of influenza virus. VII. Synthesis of the hemagglutinin. Virology 53:92–106
    [Google Scholar]
  30. Stroz J., Rott R., Kalusa G. 1981; Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. Infection and Immunity 31:1214–1222
    [Google Scholar]
  31. Sugawara K., Ohuchi M., Nakamura K., Homma M. 1981; Effect of various proteases on the glycoprotein composition and the infectivity in influenza C virus. Archives of Virology 68:147–151
    [Google Scholar]
  32. Vallbracht A., Scholtissek C., Flehmig B., Gerth H.-J. 1980; Recombination of influenza A strains with fowl plague virus can change pneumotropism for mice to a generalized infection with involvement of the central nervous system. Virology 107:452–460
    [Google Scholar]
  33. van Der Hoorn F., Saris C. I. M., Henry P. J., Bloemers A. 1983; 3Y1 rat cells are defective in processing of the envelope precursor protein of AKR virus. Virology 124:462–466
    [Google Scholar]
  34. Wallis C., Melnick J. L., Rapp F. 1966; Effects of pancreatin on the growth of reovirus. Journal of Bacteriology 92:155–160
    [Google Scholar]
  35. Warren T. 1959; The thiobarbituric acid assay of sialic acid. Journal of Biological Chemistry 234:1971–1975
    [Google Scholar]
  36. Zhirnov O. P. 1983; Proteolytic activation of myxoviruses and a new strategy in the treatment of viral diseases. Voprosi Virusologii 4:9–21
    [Google Scholar]
  37. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G. 1982a; A modified plaque assay method for accurate analysis of infectivity of influenza viruses with uncleaved haemagglutinin. Archives of Virology 71:177–183
    [Google Scholar]
  38. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G. 1982b; Protective effect of protease inhibitors in influenza virus infected animals. Archives of Virology 73:263–272
    [Google Scholar]
  39. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G. 1982c; Proteolytic activation of influenza WSN virus in cultured cells is performed by homologous plasma enzymes. Journal of General Virology 63:469–474
    [Google Scholar]
  40. Zhirnov O. P., Ovcharenko A. V., Bukrinskaya A. G., Zhdanov V. M. 1983; Protease inhibitors block dissemination of influenza virus throughout the organism of infected animals. Doklady Academii nauk SSSR 270:1483–1485
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-1-191
Loading
/content/journal/jgv/10.1099/0022-1317-65-1-191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error