1887

Abstract

SUMMARY

Molecular hybridization experiments were carried out to investigate homologous regions in the genomes of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), equid herspesvirus 1 (EHV-1), pseudorabies virus (PRV) and varicella-zoster virus (VZV). Virion DNA probes from EHV-1, PRV and VZV hybridized to similar regions of the HSV genome, and the use of cloned DNA probes allowed heterologous genomes to be oriented with respect to homologous regions. The HSV-1 and HSV-2 genomes are colinear, the EHV-1 and VZV genomes are colinear with the I or I genome arrangement of HSV, and the PRV genome is essentially colinear with the I genome arrangement of HSV except that the region 0.1 to 0.4 fractional genome units appears to be inverted. A detailed analysis of sequences in the HSV-2 and PRV genomes to which the HSV-1 major capsid protein gene hybridized was carried out in order to demonstrate the application of molecular hybridization to the location of genes in heterologous genomes. The lesion in a DNA-positive temperature-sensitive mutant of PRV was mapped within the putative PRV major capsid protein gene. We conclude that the herpesviruses we have studied possess several highly conserved genes, and propose that they are similar in genetic organization despite presumably separate evolutionary histories.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-9-1927
1983-09-01
2022-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/9/JV0640091927.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-9-1927&mimeType=html&fmt=ahah

References

  1. Ben-Porat T., Demarchi J. M., Kaplan A. S. 1974; Characterization of defective interfering particles present in a population of pseudorabies virions. Virology 61:29–37
    [Google Scholar]
  2. Blue W. T., Plummer G. 1973; Antigenic relationships among four herpesviruses. Infection and Immunity 7:1000–1002
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex type 1. The isolation of temperature sensitive mutants, their ordering into complementation groups and recombinational analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Caunt A. E., Shaw D. G. 1969; Neutralization tests with varicella-zoster virus. Journal of Hygiene 67:343–352
    [Google Scholar]
  5. Chartrand P., Stow N. D., Timbury M. C., Wilkie N. M. 1979; Physical mapping of paar mutations of herpes simplex virus types 1 and 2 by intertypic marker rescue. Journal of Virology 31:265–276
    [Google Scholar]
  6. Cortini R., Wilkie N. M. 1978; Physical maps for HSV type 2 DNA with five restriction endonucleases. Journal of General Virology 39:259–280
    [Google Scholar]
  7. Costa R. H., Devi B. G., Anderson K. P., Gaylord B. H., Wagner E. K. 1981; Characterization of a major late herpes simplex virus type 1 mRNA. Journal of Virology 38:483–496
    [Google Scholar]
  8. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  9. Denhardt D. T. 1966; A membrane filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23:641–646
    [Google Scholar]
  10. Dumas A. M., Geelen J. L. M. C., Maris W., Van Der Noordaa J. 1980; Infectivity and molecular weight of varicella-zoster virus DNA. Journal of General Virology 47:233–235
    [Google Scholar]
  11. Dumas A. M., Geelen J. L. M. C., Weststrate M. W., Wertheim P., Van Der Noordaa J. 1981; Xha I, Pst I and BgR I restriction enzyme maps of the two orientations of the varicella-zoster virus genome. Journal of Virology 39:390–400
    [Google Scholar]
  12. Easton A. J., Clements J. B. 1980; Temporal regulation of herpes simplex virus type 2 transcription and characterization of virus immediate-early mRNAs. Nucleic Acids Research 8:2627–2645
    [Google Scholar]
  13. Esparza J., Benyesh-Melnick M., Schaffer P. A. 1976; Intertypic complementation and recombination between temperature-sensitive mutants of herpes simplex virus types 1 and 2. Virology 70:372–384
    [Google Scholar]
  14. Graham F. L., van Der eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  15. Halliburton I. W., Morse L. S., Roizman B., Quinn K. E. 1980; Mapping of the thymidine kinase genes of type 1 and type 2 herpes simplex virus using intertypic recombinants. Journal of General Virology 49:235–254
    [Google Scholar]
  16. Honess R. W., Watson D. H. 1977; Unity and diversity in the herpesviruses. Journal of General Virology 37:15–37
    [Google Scholar]
  17. Honess R. W., Powell K. L., Robinson D. J., Sim C., Watson D. H. 1974; Type specific and type common antigens in cells infected with herpes simplex virus type 1 and on the surfaces of naked and enveloped particles of the virus. Journal of General Virology 22:159–169
    [Google Scholar]
  18. Hutton J. R. 1977; Renaturation kinetics and thermal stability of DNA in aqueous solutions of formamide and urea. Nucleic Acids Research 4:3537–3555
    [Google Scholar]
  19. Hutton J. R., Wetmur J. G. 1973; Effect of chemical modification on the rate of renaturation of deoxyribonucleic acid. Deaminated and glyoxalated deoxyribonucleic acid. Biochemistry 12:558–63
    [Google Scholar]
  20. Kaplan A. S., Vatter A. E. 1959; A comparison of herpes simplex and pseudorabies viruses. Virology 7:394–407
    [Google Scholar]
  21. Kieff E. D., Hoyer B., Bachenheimer S. L., Roizman B. 1972; Genetic relatedness of type 1 and type 2 herpes simplex viruses. Journal of Virology 9:738–745
    [Google Scholar]
  22. Killington R. A., Yeo J., Honess R. W., Watson D. H., Duncan B. E., Halliburton I. W., Mumford J. 1977; Comparative analysis of the proteins and antigens of five herpesviruses. Journal of General Virology 37:297–310
    [Google Scholar]
  23. Littler E., Yeo J., Killington R. A., Purifoy D. J. M., Powell K. L. 1981; Antigenic and structural conservation of herpesvirus DNA-binding proteins. Journal of General Virology 56:409–419
    [Google Scholar]
  24. Ludwig H. O., Biswal N., Benyesh-Melnick M. 1972; Studies on the relatedness of herpesviruses through DNA-DNA hybridization. Virology 49:95–101
    [Google Scholar]
  25. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild-type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  26. Matthews R. E. F. 1982; Classification and nomenclature of viruses. Fourth report of the International Committee on Taxonomy of Viruses. Intervirology 17:1–199
    [Google Scholar]
  27. Murchie M.-J., McGeoch D. J. 1982; DNA sequence analysis of an immediate-early gene region of the herpes simplex virus type 1 genome (map coordinates 0.950–0.978). Journal of General Virology 62:1–15
    [Google Scholar]
  28. Otsuka A. 1981; Recovery of DNA fragments inserted by the ‘tailing’ method: regeneration of Pst I restriction sites. Gene 13:339–346
    [Google Scholar]
  29. Plummer G. 1964; Serological comparison of the herpesviruses. British Journal of Experimental Pathology 45:135–141
    [Google Scholar]
  30. Powell D. J. 1979 Structure and expression of the pseudorabies virus genome Ph.D. thesis University of Glasgow;
    [Google Scholar]
  31. Preston V. G., Davison A. J., Marsden H. S., Timbury M. C., Subak-Sharpe J. H., WIlkie N. M. 1978; Recombinants between herpes simplex virus types 1 and 2: analyses of genome structures and expression of immediate-early polypeptides. Journal of Virology 28:499–517
    [Google Scholar]
  32. Pringle C. R., Howard D. K., Hay J. 1973; Temperature-sensitive mutants of pseudorabies virus with differential effects on viral and host DNA synthesis. Virology 55:495–505
    [Google Scholar]
  33. Rand T. H., Ben-Porat T. 1980; Distribution of sequences homologous to the DNA of herpes simplex virus, types 1 and 2, in the genome of pseudorabies virus. Intervirology 13:48–53
    [Google Scholar]
  34. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  35. Roizman B., Jacob R. J., Knipe D. M., Morse L. S., Ruyechan W. T. 1979; On the structure, functional equivalence, and replication of the four arrangements of herpes simplex virus DNA. Cold Spring Harbor Symposia on Quantitative Biology 43:809–826
    [Google Scholar]
  36. Ross L. J. N., Frazier J. A., Biggs P. M. 1972; An antigen common to some avian and mammalian herpesviruses. In Oncogenesis and Herpesviruses pp 480–484 Edited by Biggs P. M., De He G., Payne L. N. Lyon: IARC;
    [Google Scholar]
  37. Ruyechan W. T., Morse L. S., Knipe D. M., Roizman B. 1979; Molecular genetics of herpes simplex virus. II. Mapping of the major viral glycoproteins and of the genetic loci specifying the social behaviour of infected cells. Journal of Virology 29:677–697
    [Google Scholar]
  38. Schildkraut C., Lifson S. 1965; Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3:195–208
    [Google Scholar]
  39. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  40. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  41. Stow N. D., Subak-Sharpe J. H., Wilkie N. M. 1978; Physical mapping of herpes simplex virus type 1 mutations by marker rescue. Journal of Virology 28:182–192
    [Google Scholar]
  42. Timbury M. C. 1971; Temperature sensitive mutants of herpes simplex virus type 2. Journal of General Virology 13:373–376
    [Google Scholar]
  43. Timbury M. C., Subak-Sharpe J. H. 1973; Genetic interaction between temperature-sensitive mutants of types 1 and 2 herpes simplex virus. Journal of General Virology 18:347–357
    [Google Scholar]
  44. Twigg A. J., Sherratt D. J. 1980; Trans-complementable copy-number mutants of plasmid Col El. Nature, London 283:216–218
    [Google Scholar]
  45. Watson D. H., Wildy P., Harvey B. A. M., Shedden W. I. H. 1967; Serological relationships among viruses of the herpes group. Journal of General Virology 1:139–141
    [Google Scholar]
  46. Whalley J. M., Robertson G. R., Davison A. J. 1981; Analysis of the genome of equine herpesvirus type 1: arrangement of cleavage sites for restriction endonucleases Eco RI, Bg lII and Bam HI. Journal of General Virology 57:307–323
    [Google Scholar]
  47. Wilkie N. M. 1973; The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. Journal of General Virology 21:453–467
    [Google Scholar]
  48. Wilkie N. M., Cortini R. 1976; Sequence arrangement in herpes simplex virus type 1 DNA: identification of terminal fragments in restriction endonuclease digests and evidence for inversion in redundant and unique sequences. Journal of Virology 20:211–221
    [Google Scholar]
  49. Wilkie N. M., Davison A., Chartrand P., Stow N. D., Preston V. G., Timbury M. C. 1979; Recombination in herpes simplex virus: mapping of mutations and analysis of intertypic recombinants. Cold Spring Harbor Symposia on Quantitative Biology 43:827–840
    [Google Scholar]
  50. Yeo J., Killington R. A., Watson D. H., Powell K. L. 1981; Studies on cross-reactive antigens in the herpesviruses. Virology 108:256–266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-64-9-1927
Loading
/content/journal/jgv/10.1099/0022-1317-64-9-1927
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error