1887

Abstract

SUMMARY

We describe the characteristics of a general assay for eukaryote transcription-control sequences using the herpes simplex virus (HSV) thymidine kinase () gene. After transfection of cultured cells with -containing recombinant plasmids, two assays were used to measure gene expression: short term or transient levels of mRNA and TK enzyme activity, and the rate of biochemical transformation from a TK to a TK phenotype in selective growth medium (HAT). Deletion of the endogenous promoter results in 500-fold inactivation of gene expression. Replacement with exogenous transcription-control sequences from the human epsilon globin, mouse β major globin, simian virus 40 and Moloney murine sarcoma virus (MoMuSV) genomes results in reactivation of gene expression. The presence of enhancers or activators of gene expression can also be conveniently measured. The transient expression assay ranged over two orders of magnitude while the transformation assay was almost two orders of magnitude more sensitive using the same recombinants. Analysis of the transcriptioncontrol domains in the MoMuSV LTR sequences shows the presence of both an enhancer and a promoter whose activity equalled that of the endogenous promoter. Insertion of the LTR promoter between the LTR enhancer and the promoter had little effect on modulating gene expression, suggesting no absolute preference for proximal promoters by this element. The different levels of gene expression obtained appears to be mediated by transcriptional control of full-length mRNA. There was an apparent correlation between the results obtained with the transient expression and transformation assays. However, cultured transformed cells all contained roughly the same levels of DNA, mRNA and enzyme activity. We propose that initial expression levels have a major effect in determining the transformation efficiency but that additional genetic controls are superimposed in cells grown in selective HAT medium.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-12-2679
1983-12-01
2022-01-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/12/JV0640122679.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-12-2679&mimeType=html&fmt=ahah

References

  1. Banerji J., Rusconi S., Schaffner W. 1981; Expression of β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308
    [Google Scholar]
  2. Baralle F. E., Shoulders C. C., Proudfoot N. J. 1980; The primary structure of the human β-globin gene. Cell 21:621–626
    [Google Scholar]
  3. Benoist C., Chambon P. 1981; In vivo sequence requirements of the SV40 early promoter region. Nature. London 290:304–310
    [Google Scholar]
  4. Blair D. G., Mcclements W. L., Oskarsson M. K., Fischinger P. J., Vande Woude G. F. 1980; Biological activity of cloned Moloney sarcoma virus DNA: terminally redundant sequence may enhance transformation efficiency. Proceedings of the National Academy of Sciences, U. S. A 77:3504–3508
    [Google Scholar]
  5. Campo M. S., Spandidos D. A., Lang J., Wilkie N. M. 1983; Transcriptional control signals in the genome of bovine papillomavirus type 1. Nature. London 303:77–80
    [Google Scholar]
  6. Chang E. H., Ellis R. W., Scolnick E. M., Lowy D. R. 1980; Transformation by cloned Harvey murine sarcoma virus DNA: efficiency increased by long terminal repeat DNA. Science 210:1249–1251
    [Google Scholar]
  7. Conrad S. E., Botchan M. R. 1982; Isolation and characterization of human DNA fragments with nucleotide sequence homologies with the simian virus 40 regulatory region. Molecular and Cellular Biology 2:949–965
    [Google Scholar]
  8. De villiers J., Schaffner W. 1981; A small segment of polyoma virus DNA enhances the expression of a cloned β-globin gene over a distance of 1400 base pairs. Nucleic Acids Research 9:6251–6264
    [Google Scholar]
  9. Denhardt D. T. 1966; A membrane filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23:641–646
    [Google Scholar]
  10. Dhar R., Mcclements W. L., Enquist L. W., Vandewoude G. F. 1980; Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proceedings of the National Academy of Sciences, U. S. A 77:3937–3941
    [Google Scholar]
  11. Dierks P., Van ooyen A., Mantel N., Weissmann C. 1981; DNA sequences preceding the rabbit β-globin gene are required for formation in mouse L cells of β-globin RNA with the correct 5′ terminus. Proceedings of the National Academy of Sciences, U. S. A 78:1411–1415
    [Google Scholar]
  12. Dierks P., Vanooyen A., Cochran M. D., Dobkin C., Reiser J., Weissmann C. 1983; Three regions upstream from the cap site are required for efficient and accurate transcription of the rabbit β-globin gene in mouse 3T6 cells. Cell 32:695–706
    [Google Scholar]
  13. Everett R. D., Batty D., Chambon P. 1983; The repeated GC-rich motifs upstream from the TATA box are important elements of the SV40 early promoter. Nucleic Acids Research 11:2447–2464
    [Google Scholar]
  14. Fiers W., Contreras R., Haegeman G., Rogiers R., Vande voorde A., Van Heuverswyn H., Van herreweghe J., Volckaert G., Ysebaert M. 1978; Complete nucleotide sequence of SV40 DNA. Nature, London 273:113–120
    [Google Scholar]
  15. Gilmour R. S., Gow J. W., Spandidos D. A. 1982; In vivo assembly of regularly spaced nucleosomes on mouse β-globin DNA cloned in an SV40 recombinant. Bioscience Reports 2:1031–1040
    [Google Scholar]
  16. Graham F. L., Van der eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–461
    [Google Scholar]
  17. Gross-bellard M., Oudet P., Chambon P. 1973; Isolation of high molecular weight DNA from mammalian cells. European Journal of Biochemistry 36:32–36
    [Google Scholar]
  18. Grosschedl R., Birnstiel M. L. 1980; Spacer DNA sequences upstream of the TATAAATA sequence are essential for promotion of H2A histone gene transcription in vivo. Proceedings of the National Academy of Sciences, U. S. A 77:7102–7106
    [Google Scholar]
  19. Grosschedl R., Birnstiel M. L. 1982; Delimitation of far upstream sequences required for maximal in vitro transcription of an H2A histone gene. Proceedings of the National Academy of Sciences, U. S. A 79:297–301
    [Google Scholar]
  20. Gruss P., Dhar R., Khoury G. 1981; Simian virus 40 tandem repeated sequences as an element of the early promoter. Proceedings of the National Academy of Sciences, U.S.A 78:943–947
    [Google Scholar]
  21. Hirt B. 1967; Selective extraction of polyoma virus DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  22. Huang A. L., Ostrowski M. C., Berard D., Hager G. L. 1981; Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell 27:245–255
    [Google Scholar]
  23. Jamieson A. T., Subak-sharpe J. H. 1974; Biochemical studies on the herpes simplex virus-specified deoxypyrimidine kinase activity. Journal of General Virology 24:481–492
    [Google Scholar]
  24. Jolly D. J., Esty A. C., Subramani S., Friedmann T., Verma I. M. 1983; Elements in the long terminal repeat of murine retroviruses enhance stable transformation by thymidine kinase gene. Nucleic Acids Research 11:1855–1872
    [Google Scholar]
  25. Konkel D. A., Tilghman S. M., Leder P. 1978; The sequence of the chromosomal mouse β-globin major gene: homologies in capping, splicing and poly(A) sites. Cell 15:1125–1132
    [Google Scholar]
  26. Kretchmer P. J., Browman A. H., Huberman M. H., Sonders-haigh L., KIllos L., Anderson W. F. 1981; Recovery of recombinant bacterial plasmids from E. coli transformed with DNA from microinjected mouse cells. Nucleic Acids Research 9:6199–6217
    [Google Scholar]
  27. Laskey R. A., Mills A. D. 1977; Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized films. FEBS Letters 82:314–316
    [Google Scholar]
  28. Levinson B., Khoury G., Vande Woude G., Gruss P. 1982; Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus. Nature, London 295:568–672
    [Google Scholar]
  29. Littlefield J. W. 1964; Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145:709–710
    [Google Scholar]
  30. Lusky M., Berg L., Botchan M. 1982; Enhancement of tk transformation by sequences of bovine papilloma virus. In Eukaryotic Viral Vectors pp 99–107 Edited by Gluzman Y. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Mcclements W. L., Enquist L. W., Oskarsson M., Sullivan M., SL Vande Woude G. F. 1980; Frequent sitC-specific deletion of coliphage X murine sarcoma virus recombinants and its use in the identification of a retrovirus integration site. Journal of Virology 35:488–497
    [Google Scholar]
  32. Mcknight S. L. 1982; Functional relationships between transcriptional control signals of the thymidine kinase gene of herpes simplex virus. Cell 31:355–365
    [Google Scholar]
  33. Mcknight S. L., Kingsbury R. 1982; Transcriptional control signals of a eukaryotic protein-coding gene. Science 217:316–324
    [Google Scholar]
  34. Mcknight S. L., Gavis E. R., Kingsbury R., Axel R. 1981; Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25:385–398
    [Google Scholar]
  35. Moreau P., Hen R., Wasylyk B., Everett R., Gaub M. P., Chambon P. 1981; The SV4072 base-pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Research 9:6047–6068
    [Google Scholar]
  36. Norgard M. V., Keen K., Monohan J. J. 1978; Factors affecting the transformation of Escherichia coli strain yl 776 by pBR322 plasmid DNA. Gene 3:279–292
    [Google Scholar]
  37. Preston C. M., Mcgeoch D. J. 1981; Identification and mapping of two polypeptides encoded within the herpes simplex virus type 1 thymidine kinase gene sequences. Journal of Virology 38:593–605
    [Google Scholar]
  38. Reddy V. B., Thimmappaya B., Dhar R., Subramanian K. N., Zain B. S., Pan J., Ghosh P. K., Ck M. L., Weissman S. M. 1978; The genome of simian virus 40. Science 200:494–502
    [Google Scholar]
  39. Reyes G. R., Mclane M. W., Hayward G. S. 1982; Transfection with the isolated herpes simplex virus thymidine kinase genes. II. Evidence for amplification of viral and adjacent cellular DNA sequences. Journal of General Virology 60:209–224
    [Google Scholar]
  40. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific-activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  41. Sanders P. G., Wilkie N. M., Davison A. J. 1982; Thymidine kinase deletion mutants of herpes simplex virus type 1. Journal of General Virology 63:277–295
    [Google Scholar]
  42. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  43. Spandidos D. A., Paul J. 1982; T ransfer of human globin genes to erythroleukemic mouse cells. EM BO Journal 1:15–20
    [Google Scholar]
  44. Spandidos D. A., Wilkie N. M. 1983; Host-specificities of papillomavirus, Moloney murine sarcoma virus and simian virus 40 enhancer sequences. EMBO Journal 2:1193–1199
    [Google Scholar]
  45. Spandidos D. A., Harrison P. R., Paul J. 1981; Transfer and expression of herpes simplex virus thymidine kinase and human globin genes in mammalian cells studied by spot hybridization. Bioscience Reports 1:911–920
    [Google Scholar]
  46. Spandidos D. A., Harrison P. R., Paul J. 1982; Replication and amplification of recombinant plasmid molecules as extrachromosomal elements in transformed mammalian cells. Experimental Cell Research 141:149–158
    [Google Scholar]
  47. Tilghman S. M., Tiemeier D. C., Polsky F., Edgell M. H., Seidman J. G., Leder A., Enquist L. W., Norman B., Leder P. 1977; Cloning specific segments of the mammalian genome: bacteriophage X containing mouse globin and surrounding gene sequences. Proceedings of the National Academy of Sciences, U. S. A 74:4406–4410
    [Google Scholar]
  48. Twigg A. J., Sherratt D. J. 1980; Trans-complementable copy number mutants of plasmid Col El. Nature, London 283:216–218
    [Google Scholar]
  49. Tyndall C., La mantia G. L., Thacker C. M., Favaloro J., Kamen R. 1981; A region of the polyoma virus genome between the replication origin and the late protein coding sequences is required in cis for both early gene expression and viral DNA replication. Nucleic Acids Research 9:6231–6250
    [Google Scholar]
  50. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer R., Rutter W. J., Goodman H. M. 1977; Rat insulin genes: construction of plasmids containing the coding sequences. Science 196:1313–1319
    [Google Scholar]
  51. Wagner M. J., Sharp J. A., Summers W. C. 1981; Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proceedings of the National Academy of Sciences, U. S. A 78:1441–1445
    [Google Scholar]
  52. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proceedings of the National Academy of Sciences, U. S. A 76:3683–3687
    [Google Scholar]
  53. Wasylyk B., Wasylyk C., Augereau P., Chambon P. 1983; The SV40 72bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32:503–514
    [Google Scholar]
  54. Wilkie N. M., Clements J. B., Boll W., Mantei N., Lonsdale D., Weissmann C. 1979; Hybrid plasmids containing an active thymidine kinase gene of herpes simplex virus 1. Nucleic Acids Research 7:859–877
    [Google Scholar]
  55. Wilkie N. M., Eglin R. P., Sanders P. G., Clements J. B. 1980; The association of herpes simplex virus with squamous carcinoma of the cervix and studies of the virus thymidine kinase gene. Proceedings of the Royal Society of London 210B:411–421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-64-12-2679
Loading
/content/journal/jgv/10.1099/0022-1317-64-12-2679
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error