1887

Abstract

SUMMARY

The addition of TPA (phorbol-12-myristate-13-acetate) to cultures during the lytic infection with herpesvirus saimiri led to an enhanced and accelerated production of polypeptides induced by H. saimiri and to a rapid shut-down of host cell protein synthesis and allowed a detailed analysis of the protein patterns. Analysis of sequential protein synthesis in owl monkey kidney cells lytically infected with H. saimiri 11 permitted the identification of 31 virus-induced polypeptides. The use of the amino acid analogues canavanine (for arginine) and azetidine (for proline) in parallel allowed experiments on the identification of proteins synthesized early and late during lytic infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-1-37
1983-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/1/JV0640010037.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-1-37&mimeType=html&fmt=ahah

References

  1. Bayliss G. J., Nonoyama M. 1978; Mechanisms of infection with Epstein-Barr virus. III. The synthesis of proteins in superinfected Raji cells. Virology 87:204–207
    [Google Scholar]
  2. Bayliss G. J., Wolf H. 1981; The regulated expression of Epstein-Barr virus. III. Proteins specified by EBV during the lytic cycle. Journal of General Virology 56:105–118
    [Google Scholar]
  3. Bayliss G. J., Wolf H. 1982; Effect of the analogue canavanine on the synthesis of Epstein-Barr virus-induced proteins in superinfected Raji cells. Journal of Virology 41:1109–1111
    [Google Scholar]
  4. Calnek B. W., Adldinger H. K., Kohn D. E. 1970; Feather follicle epithelium. A source of enveloped and infectious cell-free herpesvirus from Marek’s disease. Avian Disease 14:219–233
    [Google Scholar]
  5. Deinhardt F., Deinhardt J. 1979; Comparative aspects: oncogenic animal herpesviruses. In The EpsteinBarr Virus pp 374–415 Edited by Epstein M. A., Achong B. G. Berlin: Springer-Verlag;
    [Google Scholar]
  6. Deinhardt F., Falk L. A., Wolfe L. G. 1974; Simian herpesviruses and neoplasia. Advances in Cancer Research 19:167–205
    [Google Scholar]
  7. Feighny R. J., Henry B. E. II, Pagano J. S. 1981; Epstein-Barr virus polypeptides: effect of inhibition of viral DNA replication on their synthesis. Journal of Virology 37:61–71
    [Google Scholar]
  8. Fenwick M. L., Walker M. J. 1978; Suppression of the synthesis of cellular macromolecules by herpes simplex virus. Journal of General Virology 41:37–51
    [Google Scholar]
  9. Honess R. W., Roizman B. 1974; Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 14:8–19
    [Google Scholar]
  10. Honess R. W., Roizman B. 1975; Regulation of herpesvirus macromolecular synthesis; sequential transition of polypeptide synthesis requires functional viral polypeptides. Proceedings of the National Academy of Sciences of the United States of America 72:1276–1295
    [Google Scholar]
  11. Honess R. W., Watson D. H. 1977a; Unity and diversity in the herpesviruses. Journal of General Virology 37:15–37
    [Google Scholar]
  12. Honess R. W., Watson D. H. 1977b; Herpes simplex virus resistance and sensitivity to phosphonoacetic acid. Journal of Virology 21:584–600
    [Google Scholar]
  13. Hudewentz J., Bornkamm G. W., Zur Hausen H. 1980; Effect of the diterpene ester TPA on Epstein-Barr antigen- and DNA-synthesis in producer and nonproducer cell lines. Virology 100:175–178
    [Google Scholar]
  14. Kallin B., Luka J., Klein G. 1979; Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-butyrate-treated P3HR-1 cells. Journal of Virology 32:710–716
    [Google Scholar]
  15. Kawanishi M., Sugawara K., Ito Y. 1981; Epstein-Barr virus-induced polypeptides: a comparative study with superinfected Raji, IudR-treated and n-butyrate-treated P3HR1 cells. Virology 102:231–233
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  17. Lamon E. W., Lidin B. 1979; Differential expression of Epstein-Barr virus early antigens in cells containing different numbers of intrinsic viral genomes: DNA synthesis requirements. In Advances in Comparative leukemia Research pp 383–384 Edited by Yohn D. S., Lapin B. A., Blakeslee J. R. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  18. Luka J., Kallin B., Klein G. 1979; Introduction of Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94:228–232
    [Google Scholar]
  19. Mele J., Glaser R., Nonoyama M., Zimmermann J., Rapp F. 1974; Observations on the resistance of Epstein-Barr virus DNA synthesis to hydroxyurea. Virology 62:102–111
    [Google Scholar]
  20. Meléndez L. V., Daniel M. D., Hunt R. D., Garcia F. G. 1968; An apparently new herpesvirus from primary kidney cultures of the squirrel monkey (Saimiri sciureus). Laboratory Animal Care 18:374–381
    [Google Scholar]
  21. Meléndez L. V., Hunt R. D., Daniel M. S., Garcia F. G., Fraser C. E. O. 1969; Herpesvirus Saimiri. II. Experimentally induced malignant lymphoma in primates. Laboratory Animal Care 19:378–386
    [Google Scholar]
  22. Meléndez L. V., Hunt R. D., Daniel M. D., Blake J. B., Garcia F. G. 1971; Acute lymphocytic leukemia on owl monkeys inoculated with herpesvirus saimiri. Science 171:1161–1163
    [Google Scholar]
  23. Morse L. S., Pereira L., Roizman B. A., Schaffer P. 1978; Anatomy of herpes simplex virus (HSV) DNA. X. mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 x HSV-2 recombinants. Journal of Virology 26:389–410
    [Google Scholar]
  24. Müller-Lantzsch N., Yamamoto N., Zur Hausen H. 1979; Analysis of early and late Epstein-Barr virus-associated polypeptides by immunoprecipitation. Virology 97:378–387
    [Google Scholar]
  25. Rakusanova T., Ben-Porat T., Himeno M., Kaplan A. S. 1971; Early functions of the genome of herpesvirus. I. Characterization of the RNA synthesized in cycloheximide-treated infected cells. Virology 46:877–889
    [Google Scholar]
  26. Wolf H., Bayliss G. J. 1979; The role of host-virus interaction for the development of herpesvirus induced malignancies of the New World primates. In Antiviral Mechanisms in the Control of Neoplasia pp 315–329 Edited by Chandra P. New York & London: Plenum Press;
    [Google Scholar]
  27. Wolf H., Roizman B. 1978; The regulation of y (structural) polypeptide synthesis in herpes simplex virus types 1 and 2 infected cells. In Oncogenesis and Herpesviruses III, Part 1 pp 327–336 Edited by de The G., Henle W., Rapp F. Lyon: IARC Scientific Publications;
    [Google Scholar]
  28. Wolf H., Bayliss G. J., Wilmes E. 1981; Biological properties of Epstein-Barr virus. In Cancer Campaign vol 5: pp 101–109 Edited by Grundmann E., Krueger G., Ablashi D. Stuttgart & New York: Gustav Fischer Verlag;
    [Google Scholar]
  29. Yajima Y., Tanaka A., Nonoyama M. 1976; Inhibition of productive replication of Epstein-Barr virus by phosphonoacetic acid. Virology 71:353–354
    [Google Scholar]
  30. Zur Hausen H., Hecker E., O’Neill F. J., Freese U. K. 1978; Persisting oncogenic herpesvirus induced by the tumour promoter TPA. Nature, London 272:373–375
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-64-1-37
Loading
/content/journal/jgv/10.1099/0022-1317-64-1-37
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error