1887

Abstract

SUMMARY

Genome RNA of mouse hepatitis virus (MHV) strain A59 has been used as a template to synthesize two virus-specific probes: cDNA, representing the majority of sequences of the genome RNA and cDNA3′, representing the 3′ end of the genome RNA. Molecular hybridization with these cDNAs was used to characterize both genome RNA and intracellular virus-specific RNAs. Hybridization of genome RNAs of MHV strains A59, JHM, and MHV-3 with A59 cDNA showed that, although these three strains exhibit different pathogenicities, they contain closely related nucleotide sequences. Hybridization of intracellular RNA from MHV-infected cells with virus-specific cDNA shows that (i) the majority of virus-specific RNA is polyadenylated, (ii) virus-specific intracellular RNA contains six subgenomic species of the same polarity as genome RNA and (iii) all subgenomic RNAs contain the same 3′ sequences as the genome RNA and thus form a nested set of RNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-64-1-127
1983-01-01
2022-05-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/64/1/JV0640010127.html?itemId=/content/journal/jgv/10.1099/0022-1317-64-1-127&mimeType=html&fmt=ahah

References

  1. Alwine J. C., Kemp D. J., Stark G. R. 1977; Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl paper and hybridization with DNA probes. Proceedings of the National Academy of Sciences of the United States of America 74:5350–5354
    [Google Scholar]
  2. Aviv H., Leder P. 1972; Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid cellulose. Proceedings of the National Academy of Sciences of the United States of America 69:1408–1412
    [Google Scholar]
  3. Bailey J., Davidson N. 1976; Methylmercury as a reversible denaturing agent for agarose-gel electrophoresis. Analytical Biochemistry 70:75–85
    [Google Scholar]
  4. Bailey O. T., Pappenheimer A. M., Cheever F. S., Daniels J. B. 1949; A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. II. Pathology. Journal of Experimental Medicine 90:181–194
    [Google Scholar]
  5. Brahic M., Haase A. T. 1978; Detection of viral sequences of low reiteration frequency by in situ hybridization. Proceedings of the National Academy of Sciences of the United States of America 75:6125–6129
    [Google Scholar]
  6. Cancedda R., Villa-Komeroff L., Lodish H. F., Schlesinger M. 1974; Initiation sites for translation of sindbis virus 42S and 26S messenger RNAs. Cell 6:215–222
    [Google Scholar]
  7. Cheley S., Anderson R., Cupples M. J., Lee Chan E. C. M., Morris V. L. 1981a; Intracellular murine hepatitis virus-specific RNAs contain common sequences. Virology 112:596–604
    [Google Scholar]
  8. Cheley S., Morris V. L., Cupples M. J., Anderson R. 1981b; RNA and polypeptide homology among murine coronaviruses. Virology 115:310–321
    [Google Scholar]
  9. Jacobs L., Spaan W. J. M., Horzinek M. C., van Der ZEIJST B. A. M. 1981; Synthesis of subgenomic mRNAs of mouse hepatitis virus is initiated independently: evidence from UV transcription mapping. Journal of Virology 39:401–406
    [Google Scholar]
  10. Lai M. M. C., Stohlman S. 1978; RNA of mouse hepatitis virus. Journal of Virology 26:236–242
    [Google Scholar]
  11. Lai M. M. C., Stohlman S. 1981; Comparative analysis of RNA genomes of mouse hepatitis virus. Journal of Virology 38:661–670
    [Google Scholar]
  12. Lai M. M. C., Brayton P. R., Armen R. C., Patton C. D., Pugh C., Stohlman S. 1981; Mouse hepatitis virus A59: mRNA structure and genetic localization of the sequence divergence from hepatropic strain MHV-3. Journal of Virology 39:823–834
    [Google Scholar]
  13. Leibowitz J. L., Wilhelmsen K. C., Bond C. W. 1981; The virus-specific intracellular RNA species of two murine coronaviruses: MHV-A59 and MHV-JHM. Virology 114:39–51
    [Google Scholar]
  14. Leibowitz J. L., Weiss S. R., Paavola E., Bond C. W. 1982; Cell-free translation of murine coronavirus RNA. Journal of Virology 43:905–913
    [Google Scholar]
  15. Leong J. A., Garapin A. C., Jackson N., Fanshier L., Levinson W., Bishop J. M. 1972; Virus-specific ribonucleic acid in cells producing Rous sarcoma virus: detection and characterization. Journal of Virology 9:891–902
    [Google Scholar]
  16. Levy G. A., Leibowitz J. L., Edgington T. S. 1981; Induction of monocyte procoagulant activity by murine hepatitis virus type 3 parallels disease susceptibility in mice. Journal of Experimental Medicine 154:1150–1163
    [Google Scholar]
  17. McIntosh K. 1974; Coronaviruses: a comparative review. Current Topics in Microbiology and Immunology 63:86–129
    [Google Scholar]
  18. Parker B., Stark G. 1979; Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infection by virus or viral RNA. Journal of Virology 31:360–369
    [Google Scholar]
  19. Ringold G., Lasfargues E. Y., Bishop J. M., Varmus H. E. 1975; Production of mouse mammary tumour virus by cultured cells in the absence and presence of hormones: assay by molecular hybridization. Virology 65:135–147
    [Google Scholar]
  20. Robb J. A., Bond C. W. 1979; Pathogenic murine coronaviruses. I. Characterization of biological behaviour in vitro and virus specific intracellular RNA of strongly neurotropic JHMV and weakly neurotropic A59V viruses. Virology 94:352–370
    [Google Scholar]
  21. Rottier P. J. M., Spaan W. J. M., Horzinek M. C., Van Der Zeijst B. A. M. 1981; Translation of three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes. Journal of Virology 38:20–26
    [Google Scholar]
  22. Siddell S. G., Wege H., Barthel A., Ter Meulen V. 1980; Coronavirus JHM: cell free synthesis of structural protein p60. Journal of Virology 33:10–17
    [Google Scholar]
  23. Spaan W. J. M., Rottier P. J. M., Horzinek M. C., van Der Zeijst B. A. M. 1981; Isolation and identification of virus-specific mRNAs in cells infected with mouse hepatitis virus (MHV-A59). Virology 108:424–434
    [Google Scholar]
  24. Sturman L. S., Takemoto K. K. 1972; Enhanced growth of a murine coronavirus in transformed mouse cells. Infection and Immunity 6:501–507
    [Google Scholar]
  25. Tal J., Rung H. J., Varmus H. E., Bishop J. M. 1977; Characterization of DNA complementary to nucleotide sequences adjacent to poly(A) at the 3′ terminus of avian sarcoma virus genome. Virology 78:183–197
    [Google Scholar]
  26. Taylor J. M., Illmensee R., Sommers S. 1976; Efficient transcription of RNA into DNA by avian sarcoma virus polymerase. Biochimica et biophysica acta 442:324–330
    [Google Scholar]
  27. Thomas P. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences of the United States of America 77:5201–5205
    [Google Scholar]
  28. Wege H., Siddell S., Sturm M., Ter Meulen V. 1981; Coronavirus JHM: characterization of intracellular RNA. Journal of General Virology 54:213–217
    [Google Scholar]
  29. Weiss S. R., Leibowitz J. L. 1981; Comparison of the RNAs of murine and human coronaviruses. In Proceedings of the Symposium on the Biology and Biochemistry of Coronaviruses pp 245–260 Edited by Ter Meulen V., Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  30. Weiss S. R., Varmus H. E., Bishop J. M. 1977; The size and genetic composition of virus-specific RNAs in the cytoplasm of cells producing avian sarcoma-leukosis viruses. Cell 12:983–992
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-64-1-127
Loading
/content/journal/jgv/10.1099/0022-1317-64-1-127
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error