1887

Abstract

SUMMARY

This report deals with physical characterization of the generalized transducing phage 5006M. The morphology of the phage is presented, the buoyant density was determined (1.491 g/ml) and the G + C content of the phage DNA was found to be 44%. The phage genome has a length of 14.8 µm and mol. wt. of 30.7 × 10. Denaturation mapping revealed non-random circular permutation of the phage DNA. The genome exhibits 3.6% terminal redundancy as shown by homoduplex analysis. The existence of concatemeric precursors of phage 5006M DNA is inferred and the results are interpreted in terms of a sequential headful packaging mechanism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-45-2-389
1979-11-01
2022-08-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/45/2/JV0450020389.html?itemId=/content/journal/jgv/10.1099/0022-1317-45-2-389&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 In Bacteriophages New York: Interscience;
    [Google Scholar]
  2. Botstein D. 1968; Synthesis and maturation of phage P22 DNA. I. Identification of intermediates. Journal of Molecular Biology 34:621–641
    [Google Scholar]
  3. Botstein D., Levine M. 1968; Intermediates in the synthesis of phage P22 DNA. Cold Spring Harbour Symposia on Quantitative Biology 33:659–667
    [Google Scholar]
  4. Botstein D., Waddel C. H., King J. 1973; Mechanism of head assembly and DNA encapsulation in Salmonella phage P22. I. Genes, proteins, structures and DNA maturation. Journal of Molecular Biology 80:669–695
    [Google Scholar]
  5. Bruner R., Vinograd J. 1965; The evaluation of standard sedimentation coefficients of sodium RNA and sodium DNA from sedimentation velocity data in concentrated NaCl and CsCl solutions. Biochimica et Biophysica Acta 108:18–29
    [Google Scholar]
  6. Bukhari A. I., Taylor A. L. 1975; Influence of insertions on packaging of host sequences covalently linked to bacteriophage Mu DNA. Proceedings of the National Academy of Sciences of the United States of America 72:4399–4403
    [Google Scholar]
  7. Clewell D. B., Helinsky D. R. 1969; Supercoiled circular DNA–protein complex in Escherichia coli: purification and induced conversion to an open circular DNA form. Proceedings of the National Academy of Sciences of the United States of America 62:1159–1166
    [Google Scholar]
  8. Clowes R. C. 1972; Molecular structure of bacterial plasmids. Bacteriological Reviews 36:361–405
    [Google Scholar]
  9. Coetzee J. N. 1974; High frequency transduction of kanamycin resistance in Proteus mirahilis. Journal of General Microbiology 84:285–296
    [Google Scholar]
  10. Coetzee J. N. 1975; High frequency transduction of resistance to ampicillin and kanamycin in Proteus mirabilis. Journal of General Microbiology 87:173–176
    [Google Scholar]
  11. Coetzee J. N. 1976; Derivation and properties of Proteus mirabilis systems for high frequency transduction of streptomycin-sulphonamide and streptomycin-sulphonamide-kanamycin resistances. Journal of General Microbiology 96:95–107
    [Google Scholar]
  12. Coetzee J. N. 1977; Derivation of a Proteus mirabilis converting phage for ampicillin resistance. Journal of General Microbiology 99:127–138
    [Google Scholar]
  13. Coetzee J. N., Lecatsas G., Coetzee W. F., Hedges R. W. 1979; Properties of R plasmid R772 and the corresponding pilus–specific phage PR772. Journal of General Microbiology 110:263–272
    [Google Scholar]
  14. Coetzee W. F., Pretorius G. H. J. 1979; Factors which influence the electron microscopic appearance of DNA when benzyldimethylalkyl–ammonium chloride is used. Journal of Ultrastructure Research 67:33–39
    [Google Scholar]
  15. Hurst R. E., Incardona N. L. 1969; Molecular weights of viruses from isopycnic centrifugation with schlieren optics. Virology 37:62–73
    [Google Scholar]
  16. Jackson E. N., Miller H. I., Adams M. L. 1978a; Eco R1 restriction endonuclease cleavage site map of bacteriophage P22 DNA. Journal of Molecular Biology 118:347–363
    [Google Scholar]
  17. Jackson E. N., Jackson D. A., Deans R. J. 1978b; Eco R1 analysis of bacteriophage P22 packaging. Journal of Molecular Biology 118:365–388
    [Google Scholar]
  18. Krizsanovich K. 1973; Cryptic lysogeny in Proteus mirabilis. Journal of General Virology 19:311–320
    [Google Scholar]
  19. Krizsanovich–Williams K. 1975; Specialized transduction of a leucine marker by Proteus mirabilis phage 5006M. Journal of General Microbiology 91:213–216
    [Google Scholar]
  20. Lee C. S., Davis R. W., Davidson N. 1970; A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. Journal of Molecular Biology 48:1–22
    [Google Scholar]
  21. Machattie L. A., Gill G. S. 1977; DNA maturation by the ‘headful’ mode in bacteriophage T1 . Journal of Molecular Biology 110:441–465
    [Google Scholar]
  22. Mandell J. D., Hershey A. D. 1960; A fractionating column for analysis on nucleic acids. Analytical Biochemistry 1:66–77
    [Google Scholar]
  23. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance–temperature profile for determining the guanine plus cytosine content of DNA. In Methods in Enzymology 12:195–206
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  25. Prozesky O. W., De Klerk H. C., Coetzee J. N. 1965; The morphology of proteus bacteriophages. Journal of General Microbiology 41:29–36
    [Google Scholar]
  26. Rhoades M., Machattie L. A., Thomas C. A. 1968; The P22 bacteriophage molecule: I. The mature form. Journal of Molecular Biology 37:21–40
    [Google Scholar]
  27. Streisinger G., Emrich J., Stahl M. M. 1967; Chromosome structure in Phage T4. III. Terminal redundancy and length determination. Proceedings of the National Academy of Sciences of the United States of America 57:292–295
    [Google Scholar]
  28. Tye B. K., Huberman J. A., Botstein D. 1974; Non–random circular permutation of phage P22 DNA. Journal of Molecular Biology 85:501–532
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-45-2-389
Loading
/content/journal/jgv/10.1099/0022-1317-45-2-389
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error