1887

Abstract

Summary

The extinction-temperature profile of parsley carrot-leaf virus in 0.02 -(Na-K) phosphate buffer, pH 7.2, containing 0.1 -NaCl, was determined. At the T (dissociation temperature = 65 °C), the point at which begins to increase, the virus particles apparently dissociate to form RNA and empty protein shells (top component). At the T (temperature at the inflexion point of the curve = 70 °C), corresponding to half the maximum increase in , the protein denatures and precipitates. Temperatures below T have little effect on the virus, whereas temperatures higher than T also degrade the RNA. The results of the present work seem to suggest that the increase in of PCLV preparations upon heating is mostly attributable to turbidity caused by coat protein denaturation rather than to effects on RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-35-1-25
1977-04-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/35/1/JV0350010025.html?itemId=/content/journal/jgv/10.1099/0022-1317-35-1-25&mimeType=html&fmt=ahah

References

  1. Avgelis A., Quacquarelli A. 1974a; Le virosi delle piante ortensi in Puglia. XIV. La maculatura clorotica e il rachitismo cespuglioso del Prezzemolo. Phytopathologia Mediterranea 13:1–9
    [Google Scholar]
  2. Avgelis A., Quacquarelli A. 1974b; Studi sul virus della laciniatura a foglia di carota del Prezzemolo. I. Relazione sierologica con il virus della maculatura gialla della Cicoria. Phytopathologia Mediterranea 13:97–100
    [Google Scholar]
  3. Bachrach H. L. 1964; Foot and mouth disease virus: structure and mechanism of degradation as deduced from absorbance-temperature relationship. Journal of Molecular Biology 8:348–358
    [Google Scholar]
  4. Bachrach H. L. 1965; Foot and mouth disease virus: structural changes during reaction with cations and formaldehyde as deduced from absorbance measurements. Virology 25:532–540
    [Google Scholar]
  5. Bishop D. H. L., Claybrook J. R., Spiegelman S. 1967; Electrophoretic separation of viral nucleic acids on polyacrylamide gels. Journal of Molecular Biology 26:373–387
    [Google Scholar]
  6. Cohen S. S., Stanley W. M. 1942; The molecular size and shape of the nucleic acid of tobacco mosaic virus. Journal of Biological Chemistry 144:589–598
    [Google Scholar]
  7. Dunn D. B., Hitchborn J. H. 1965; The use of bentonite in the purification of plant viruses. Virology 25:171–192
    [Google Scholar]
  8. Harrison B. D., Murant A. F., Mayo M. A. 1972; Evidence for two functional RNA species in raspberry ringspot virus. Journal of General Virology 16:339–348
    [Google Scholar]
  9. Hitchborn J. H. 1968; Evidence for the release of 28S RNA from turnip yellow mosaic virus heated in vitro. Journal of General Virology 3:137–140
    [Google Scholar]
  10. Kaper J. M. 1971; Studies on the stabilizing forces of simple RNA viruses. I. Selective interference with protein-RNA interactions in turnip yellow mosaic virus. Journal of Molecular Biology 56:259–276
    [Google Scholar]
  11. Kaper J. M., Alting Siberg R. 1969a; Degradation of turnip yellow mosaic virus by freezing and thawing in vitro: a new method for studies on the internal organization of the viral components and for isolating native RNA. Virology 38:407–413
    [Google Scholar]
  12. Kaper J. M., Alting Siberg R. 1969b; The effect of freezing on the structure of turnip yellow mosaic and a number of other simple plant viruses. An ultracentrifugal analysis. Cryobiology 5:366–374
    [Google Scholar]
  13. Kaper J. M., Steere R. L. 1959a; Infectivity of tobacco ringspot virus nucleic acid preparations. Virology 7:127–139
    [Google Scholar]
  14. Kaper J. M., Steere R. L. 1959b; Isolation and preliminary studies of soluble protein and infectious nucleic acid from turnip yellow mosaic virus. Virology 8:527–530
    [Google Scholar]
  15. Lippincott J. A. 1961; Properties of infectious ribonucleic acid preparations obtained from tobacco mosaic virus by a heat method. Virology 13:348–362
    [Google Scholar]
  16. Lyttleton J. W., Matthews R. E. F. 1958; Release of nucleic acid from turnip yellow mosaic virus under mild conditions. Virology 6:460–471
    [Google Scholar]
  17. Quacquarelli A., Avgelis A., Piazzolla P. 1974; Studi sul virus della laciniatura a foglia di carota del Prezzemolo. II. Determinazione di alcune caratteristiche fisico-chimiche. Phytopathologia Mediterranea 13:155–159
    [Google Scholar]
  18. Quacquarelli A., Gallitelli D., Savino V., Martelli G. P. 1976; Properties of grapevine fanleaf virus. Journal of General Virology 32:349–360
    [Google Scholar]
  19. Quacquarelli A., Piazzolla P., Vovlas C. 1972a; Freezing in the production of artificial top component of chicory yellow mottle virus. Journal of General Virology 17:147–156
    [Google Scholar]
  20. Quacquarelli A., Piazzolla P., Vovlas C. 1972b; Preparation of nucleic acid from chicory yellow mottle virus. Phytopathologia Mediterranea 11:207–209
    [Google Scholar]
  21. Scraba D. G., Hostvedt P., Colter J. S. 1970; Physical and chemical studies of mengovirus variants. III. Absorbance-temperature profiles, sedimentation in dextran sulfate gradients, and total/infectious particle ratios. Canadian Journal of Biochemistry 48:412–417
    [Google Scholar]
  22. Vovlas C., Martelli G. P., Quacquarelli A. 1971; Le virosi delle piante ortensi in Puglia. VI. II complesso delle maculature anulari della Cicoria. Phytopathologia Mediterranea 10:224–254
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-35-1-25
Loading
/content/journal/jgv/10.1099/0022-1317-35-1-25
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error