1887

Abstract

Summary

It has been shown that particles of Vi bacteriophage III catalyse deacetylation of -acetyl pectic (polygalacturonic) acid, a structural analogue of Vi poly-saccharide (Vi antigen). Using this substrate, and determining the acetic acid liberated by gas-liquid chromatography, a method for the estimation of Vi phage deacetylase activity has been developed.

Purified particles of Vi phage III were exposed to a variety of mildly dissociative reagents and conditions, and then tested for plaque-forming and for deacetylase activity. They have also been inspected under the electron microscope. Osmotic shock, and incubation in the presence of ethylenediaminetetraacetic acid (≥ 0.01 ), or of -arginine (0.25 ), were found to cause disintegration of the virions into empty head capsids, deoxyribonucleic acid, and base plates still carrying the spikes. The mixtures of viral fragments exhibited an increased deacetylase activity.

Using zonal sedimentation and ion exchange chromatography, the phage fragments obtained by treatment with ethylenediaminetetraacetic acid have been fractionated and the base plates isolated. Amongst the viral components, these structures showed the highest specific deacetylase activity. They had the shape of six-pointed stars (about 9.5 nm inner, and 14.5 nm outer diam.) with a central hole or plug (∼3 nm), carrying six spikes, roughly cylindrical organelles of approx. 11 × 4 nm, one at each of the points. Of the polypeptides of six sizes (P.1, about 153000 daltons; P.2, 91000; P.3, 71000; P.4, 56500; P.6, 22000), detected in whole Vi phage III virions by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, only two, P.2 and P.3, were found in the base plates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-29-3-267
1975-12-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/29/3/JV0290030267.html?itemId=/content/journal/jgv/10.1099/0022-1317-29-3-267&mimeType=html&fmt=ahah

References

  1. Ackermann H.-W., Berthiaume I., Kasatiya S. S. 1970; Ultrastructure of Vi phages I to VII of Salmonella typhi. Canadian Journal of Microbiology 16:411–413
    [Google Scholar]
  2. Adams M. H. 1959 In Bacteriophages New York: Interscience Publishers Inc;
    [Google Scholar]
  3. Brenner S., Streisinger G., Horne R. W., Champe S. P., Barnett L., Benzer S., Rees M. W. 1959; Structural components of bacteriophage. Journal of Molecular Biology 1:281–292
    [Google Scholar]
  4. Heyns K., Kiessling G. 1967; Strukturaufklarung des Vi-Antigens aus Citrobacter freundii (E. coli) 5396/38. Carbohydrate Research 3:340–353
    [Google Scholar]
  5. Kozloff L. M., Lute M., Crosby L. K., Wong R., Stern B. 1969; Critical arginine residue for maintaining the bacteriophage tail structure. Journal of Virology 3:217–227
    [Google Scholar]
  6. Kwiatkowski B. 1969; Location of the Vi phage II enzyme causing deacetylation of Vi-polysaccharide. Bulletin of the Institute of Marine Medicine in Gdánsk 20:235–242
    [Google Scholar]
  7. Kwiatkowski B., Taylor A. 1970; Two-step attachment of Vi phage I to the bacterial surface. Acta Microbiologica Polonica Series A 2:13–20
    [Google Scholar]
  8. Méndez E., Ramirez G., Salas M., Vinuela E. 1971; Structural proteins of bacteriophage ϕ 29. Virology 45:567–576
    [Google Scholar]
  9. Murata A., Odaka M., Mukuno S. 1974; The bacteriophage-inactivating effect of basic amino acids;arginine, histidine, and lysine. Agricultural and Biological Chemistry (Japan) 38:477–478
    [Google Scholar]
  10. Ottenstein D. M., Bartley D. A. 1971; Separation of free acids C2-C5 in dilute aqueous solution column technology. Journal of Chromatographic Science 9:673–681
    [Google Scholar]
  11. Rieger D., Freund-Molbert E., Stirm S. 1975; Escherichia coli capsule bacteriophages. III. Fragments of bacteriophage 29. Journal of Virology 15:964–975
    [Google Scholar]
  12. Rudolph C., Freund-Molbert E., Stirm S. 1975; Fragments of Klebsiella bacteriophage No. 11. Virology 64:236–246
    [Google Scholar]
  13. Sawyer W. H., Puckridge J. 1973; The dissociation of proteins by chaotrophic salts. Journal of Biological Chemistry 248:8429–8433
    [Google Scholar]
  14. Schweiger R. G. 1964; Acetyl pectates and their reactivity with polyvalent metal ions. Journal of Organic Chemistry 29:2973–2976
    [Google Scholar]
  15. Solms J., Deuel H. 1951; Untersuchungen an acetylierter Pektinsaure. Helvetica Chimica Acta 34:2242–2249
    [Google Scholar]
  16. Snyder F., Stephens N. 1959; A simplified spectrophotometric determination of ester groups in lipids. Biochimica et Biophysica Acta 34:244–245
    [Google Scholar]
  17. Stirm S., Freund-Molbert E. 1971; Escherichia coli capsule bacteriophages. II. Morphology. Journal of Virology 8:330–342
    [Google Scholar]
  18. Studier F. W., Maizel J. V. 1969; T7-directed protein synthesis. Virology 39:575–586
    [Google Scholar]
  19. Szczeklik H., Kwiatkowski B., Taylor A. 1974; The attachment of Vi-phage III. The presence of Vi-polysaccharide deacetylase. Acta Biochimica Polonica 21:33–41
    [Google Scholar]
  20. Takeda K., Uetake H. 1973; In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with Salmonella phage e15. Virology 52:148–159
    [Google Scholar]
  21. Taylor K. 1965; Enzymatic deacetylation of Vi-polysaccharide by Vi-phage II. Biochemical and Biophysical Research Communications 20:752–757
    [Google Scholar]
  22. Taylor K. 1966; Physical and chemical changes of Vi-polysaccharide due to Vi-phage II action. Acta Biochimica Polonica 13:97–106
    [Google Scholar]
  23. Taylor K., Kwiatkowski B. 1966; Electron microscopic studies of Vi-phage II adsorption on Salmonella typhi. Acta Microbiologica Polonica 15:27–34
    [Google Scholar]
  24. Thurow H., Niemann H., Stirm S. 1975; Bacteriophage-borne enzymes in carbohydrate chemistry. I. On the glycanase activity associated with particles of Klebsiella bacteriophage No. 11. Carbohydrate Research (in the press)
    [Google Scholar]
  25. To C. M., Kellenberger E., Eisenstark A. 1969; Disassembly of T-even bacteriophage into structural parts and subunits. Journal of Molecular Biology 46:493–511
    [Google Scholar]
  26. Tsugita A. 1971; Phage lysozyme and other lytic enzymes. In The Enzymes vol 5 pp 343–411 Edited by Boyer P. D. New York and London: Academic Press;
    [Google Scholar]
  27. Weber K., Osborn M. 1969; The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. Journal of Biological Chemistry 244:4406–4412
    [Google Scholar]
  28. Weber K., pringle J. R., Osborn M. 1972; Measurement of molecular weights by electrophoresis in SDS-acrylamide gel. In Methods in Enzymology vol 27 pp 3–27 Edited by Hirs C. H. W., Timasheff S. N. New York and London: Academic Press;
    [Google Scholar]
  29. Webster M. E., sagin J. F., Freeman M. E. 1952; A turbidimetric method for assay of Vi antigen. Proceedings of the Society for Experimental Biology and Medicine 81:263–266
    [Google Scholar]
  30. Yamamoto M., Uchida H. 1973; Organization and function of bacteriophage T4 tail. I. Isolation of heat-sensitive T4 tail mutants. Virology 52:234–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-29-3-267
Loading
/content/journal/jgv/10.1099/0022-1317-29-3-267
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error