1887

Abstract

The structural system in the small RNA viruses is the same for all the viruses examined so far, with the possible exceptions of the pea enation mosaic virus middle componenet, tobacco streak virus and alfalfa mosaic virus. While there is a greater variation in the structural arrangements of the different viruses, all appear to ppossess icosahedral symmetry or a structure based on the such a symmetry.

All the viruses contain single-stranded RNA. Most contain only one species of RNA with a mol. wt. of approxiamately 1.1 × 10 for the paheges and 2.6 × 10fot eh vertebrate viruses genomes in which two or three different species of RNA are required for inspection. The possession of a split genome may not be confined to the smal RNA viruses of plants in viewe of the recent observations with Nodamura virus referred to above. This virus is particularly interesting in this respect since it inffects both vertebrate and invertebrate hosts. Little is known about the RNAs of the other invertebrate viruses

The number of proteins in the viruses varies from 1 to 4. This great variation compared with, for example, the rhabdoviruses presumably can be tolerated because of the very effective packaging invol ved in icosahefral symmetry.

One of the most exciting prospects in the small RNA viruses is the understandin g of the way in which the replication of the prospects of the split genome viruses is organiozed. The determination of this requires a suitable technique which may be provided by the protoplast system (Takebe & Ots, 1969). A study of the replication of Nodamura virus in mice, bees or waxmoths, which it kills, and in mosquitoes, whick it does not kill, also provide an engaging comparison.

The small RNA viruses from different organisms each have characteristics properties. for example, most of the viruses from vertebrates have a single species of RNA of mol. wt. about 2.5 x10 and four capsid proteins whereas most of those from bacteria have an RNA of about 1 × 10 and two capsied proteins. These differences probably reflect the adaptations of the baic desig n of the vitrus to the various host systems.

The authors would like to thank Prigfessor J.B. Ba ncroft for the f migure he generously supplied and also t he Academic Press for permitting its use.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-20-Supplement-43
1973-06-01
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/20/Supplemen/JV02000S0043.html?itemId=/content/journal/jgv/10.1099/0022-1317-20-Supplement-43&mimeType=html&fmt=ahah

References

  1. August J. T., Banerjee A. K., Eoyang L., Franze De Fernandez M. T., Hori K., Kuo C. H., Renstng U., Shapiro L. 1968; Synthesis of bacteriophage QR RNA. Cold Spring Harbor Symposium on Quantitative Biology 33:73–81
    [Google Scholar]
  2. Bailey L., Gibbs A. J., Woods R. D. 1963; Two viruses front adult honey bees (Apis meilifera Linnaeus). Virology 21:390–395
    [Google Scholar]
  3. Bailey L., Gibbs A. J., Woods R. D. 1964; Sacbrood virus of the larval honey bee (Apis meilifera Linnaeus). Virology 23:425–429
    [Google Scholar]
  4. Bancroft J. B. 1970; The self-assembly of spherical plant viruses. Advances in Virus Research 16:99–134
    [Google Scholar]
  5. Bancroft J. B., Hills O. J., Markham R. 1967; A study of the self-assembly process in a small spherical virus Formation of organized structures from protein subunits in vitro. Virology 31:354–379
    [Google Scholar]
  6. Bancroft J. B., Hiebert E., Bracker C. E. 1969; The effects of various polyanions on shell formation of some spherical viruses. Virology 39:924–930
    [Google Scholar]
  7. Bancroft J. B., Lane L. C. 1973; Genetic analysis of cowpea chlorotic mottle and brome mosaic viruses. Journal of General Virology 19:381–389
    [Google Scholar]
  8. Bendis I., Shapiro L. 1970; Properties of Caulobacier ribonucleic acid bacteriophage 0Cbs. Journal of Virology 6:847–854
    [Google Scholar]
  9. Bernhard W. 1969; A new staining procedure for electron microscopical cytology. Journal of Ultrastructure Research 27:250–265
    [Google Scholar]
  10. Bishop D. H. L., Pace N. R., Spiegelman S. 1967; The mechanism of replication: a novel polarity reversal in the in vitro synthesis of QB-RNA and its complement. Proceedings of the National Academy of Sciences of the United States of America 58:1790–1797
    [Google Scholar]
  11. Bol J. F., Van Vloten-Doting L., Jaspars E. M. J. 1971; A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus. Virology 46:73–85
    [Google Scholar]
  12. Brown F., Martin S. J. 1965; A new model for vims ribonucleic acid replication. Nature, London 208:861–863
    [Google Scholar]
  13. Brown F., Newman J. F. E., Stott E. J. 1970; Molecular weight of rhinovirus ribonucleic acid. Journal of General Virology 8:145–148
    [Google Scholar]
  14. Butler P. J. G. 1970; Structures of turnip crinkle and tomato bushy stunt viruses. 3. The chemical subunits: molecular weights and number of molecules per particle. Journal of Molecular Biology 52:589–593
    [Google Scholar]
  15. Caspar D., Klug A. 1962; Physical principles in the construction of regular viruses. Cold Spring Harbor Symposium on Quantitative Biology 27:1–24
    [Google Scholar]
  16. Caspar D., Klug A. 1963; Structure and assembly of regular virus particles. In Viruses, Nucleic Acid and Cancer pp. 27–39 University of Texas, M. D. Anderson Hospital and Tumor Institute. The Williams and Wilkins Company;
    [Google Scholar]
  17. Van Ravenswaay Claasen J. C. 1967; Synthesis of a plant viral specific protein in the cell free system of Escherichia coll. Thesis University of Leiden;
    [Google Scholar]
  18. Cmi/Aab 1970–1972 Descriptions of Plant Viruses Edited by Gibbs, A. J., Harrison B. D., Murant A. F. Commonwealth Mycological Institute and Association of Applied Biologists; London:
    [Google Scholar]
  19. Diener T. O., Schneider I. R. 1966; The two components of tobacco ringspot virus nucleic acid: origin and properties. Virology 29:100–105
    [Google Scholar]
  20. Dietzschold B., Kaaden O. R., Tokui T., Bohm H. O. 1971; Polynucleotide sequence homologies among the RNAs of foot-and-mouth disease virus types A, C and O. Journal of General Virology 13:1–7
    [Google Scholar]
  21. Dingjan-Versteegh A., Van Vloten-Doting L., Jaspars E. M. J. 1972; Alfalfa mosaic virus hybrids constructed by exchanging nucleoprotein components. Virology 49:716–722
    [Google Scholar]
  22. Dorné B., Hirth L. 1968; Influence d’organo-mercuriels sur la configuration du virus du rabougrissement buissonneux de la tomate. Compte rendu hebdomadaire des seances de l’Académie des Sciences, Paris D267:127–130
    [Google Scholar]
  23. Feix G., Slor H., Weissmann C. 1967; Replication of viral RNA, 13 The early product of phage RNA synthesis in vitro. Proceedings of the National Academy of Sciences of the United States of America 57:1401–1408
    [Google Scholar]
  24. Fenwick M. L., Erikson R. L., Franklin R. M. 1964; Replication of the RNA of bacteriophage R17. Science, New York 146:527–530
    [Google Scholar]
  25. Geelen J. L. M. C., Van Kammen A., Verduin B. J. M. 1972; Structure of the capsid of cowpea mosaic virus. The chemical subunit: molecular weight and number of subunits per particle. Virology 49:205–213
    [Google Scholar]
  26. Harrison B. D., Finch J. T., Gibbs A. J., Hollings M., Shepherd R. J., Valenta V., Wetter C. 1971; Sixteen groups of plant viruses. Virology 45:356–363
    [Google Scholar]
  27. Harrison B. D., Murant A. F., Mayo M. A. 1972a; Evidence for two functional RNA species in raspberry ringspot virus. Journal of General Virology 16:339–348
    [Google Scholar]
  28. Harrison B. D., Murant A. F., Mayo M. A. 1972b; Two properties of raspberry ringspot virus determined by its smaller RNA. Journal of General Virology 17:137–141
    [Google Scholar]
  29. Hohn T., Hohn B. 1970; Structure and assembly of simple RNA bacteriophages. Advances in Virus Research 16:43–98
    [Google Scholar]
  30. Holland J. J., Kiehn E. D. 1968; Specific cleavage of viral proteins as steps in the synthesis and maturation of enteroviruses. Proceedings of the National Academy of Sciences of the United States of America 60:1015–1022
    [Google Scholar]
  31. Hull H. 1969; Alfalfa mosaic virus. Advances in Virus Research is:365–433
    [Google Scholar]
  32. Hull R. 1971; Examination of alfalfa mosaic virus protein on polyacrylamide gels. Virology 45:767–772
    [Google Scholar]
  33. Hull R., Hills G. J., Markham R. 1969; Studies on alfalfa mosaic virus. 2. The structure of the virus components. Virology 37:416–428
    [Google Scholar]
  34. Jacobson M. F., Baltimore D. 1968a; Morphogenesis of poliovirus, 1. Association of the viral RNA with coat protein. Journal of Molecular Biology 33:369–378
    [Google Scholar]
  35. Jacobson M. F., Baltimore D. 1968b; Polypeptide cleavages in the formation of poliovirus proteins. Proceedings of the National Academy of Sciences of the United States of America 61:77–84
    [Google Scholar]
  36. Johnston M. D., Martin S. J. 1971; Capsid and procapsid proteins of a bovine enterovirus. Journal of General Virology 11:71–79
    [Google Scholar]
  37. Van Kammen A. 1967; Purification and properties of the components of cowpea mosaic virus. Virology 31:633–642
    [Google Scholar]
  38. Van Kammen A. 1968; The relationship between the components of cowpea mosaic virus. 1. Two ribo-nucleoprotein particles necessary for the infectivity of cowpea mosaic virus. Virology 34:312–318
    [Google Scholar]
  39. Kaper J. M. 1968; The small RNA viruses of plants, animals and bacteria. A. Physical properties. In Molecular Basis of Virology pp. 1–128 Edited by Fraenkel-Conrat. H. Reinhold Book Corporation;
    [Google Scholar]
  40. Kaper J. M. 1971; Studies on the stabilizing forces of simple RNA viruses. 1. Selective interference with protein-RNA interactions in turnip yellow mosaic virus. Journal of Molecular Biology 56:259–276
    [Google Scholar]
  41. Kaper J. M., Geelen J. L. M. C. 1971; Studies on the stabilizing forces of simple RNA viruses. 2. Stability, dissociation and reassembly of cucumber mosaic virus. Journal of Molecular Biology 56:277–294
    [Google Scholar]
  42. Katagiri S., Alkawa S., Hinuma Y. 1971; Stepwise degradation of poliovirus capsid by alkaline treatment. Journal of General Virology 13:101–109
    [Google Scholar]
  43. Klein W. H., Nolan C., Lazar J. M., Clark J. M. 1972; Translation of satellite tobacco necrosis virus ribonucleic acid. I. Characterization of in vitro procaryotic and eucaryotic translation products. Biochemistry 11:2009–2019
    [Google Scholar]
  44. Kruseman J., Kraal B., Jaspars E. M. J., Bol J. F., Brederode F. T., Veldstra H. 1970; Molecular weight of the coat protein of alfalfa mosaic virus. Biochemistry 10:447–454
    [Google Scholar]
  45. Lane L. C., Kaesberg P. 1971; Multiple genetic components in bromegrass mosaic virus. Nature, London 232:40–43
    [Google Scholar]
  46. Lebeurier G., Fraenkel-Conrat H., Wurtz M., Hirth L. 1971; Self-assembly of protein subunits from alfalfa mosaic virus. Virology 43:51–61
    [Google Scholar]
  47. Lodish H. F. 1968; Bacteriophage f2 RNA: control of translation and gene order. Nature, London 220:345–350
    [Google Scholar]
  48. Longworth J. F., Payne C. C., Macleod R. 1973; Studies on a virus isolated from Gonometa podocarpi (Lepidoptera: Lasciocampidae). Journal of General Virology 18:119–125
    [Google Scholar]
  49. Lwoff A., Tournier P. 1971; Remarks on the classification of viruses. In Comparative Virology pp. 1–42 Edited by Maramorosch K., Kurstak E. London and New York: Academic Press;
    [Google Scholar]
  50. Martin S. J., Johnston M. D. 1972; The selective release of proteins from a bovine enterovirus. Journal of General Virology 16:115–125
    [Google Scholar]
  51. Matthews K. F., Cole R. D. 1972; Shell formation by capsid protein of f2 bacteriophage. Journal of Molecular Biology 65:1–15
    [Google Scholar]
  52. Nathans D., Oeschger M. P., Eggen K., Shimura Y. 1966; Bacteriophage-specific proteins in E. coll infected with an RNA bacteriophage. Proceedings of the National Academy of Sciences of the United States of America 56:1844–1851
    [Google Scholar]
  53. Newman J. F. E., Brown F., Bailey L., Gibbs A. J. 1973; Some physico-chemical properties of two honeybee picornaviruses. Journal of General Virology 19:405–409
    [Google Scholar]
  54. Newman J. F. E., Rowlands D. J., Brown F. 1973; A physico-chemical sub-grouping of the mammalian picornaviruses. Journal of General Virology 18:171–180
    [Google Scholar]
  55. Nishthara T., Watanabe L. 1969; Discrete buoyant density distribution among RNA phages. Virology 39:360–362
    [Google Scholar]
  56. Ohtaka Y., Spiegelman S. 1963; Translational control of protein synthesis in a cell-free system directed by a polycistronic viral RNA. Science, New York 142:493–497
    [Google Scholar]
  57. Otsukt Y., Takebe I., Honda Y., Matsui C. 1972; Ultrastructure of infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Virology 49:188–194
    [Google Scholar]
  58. Van Regenmortel M. H. V., Hendry D. A., Baltz T. 1972; A re-examination of the molecular size of cucumber mosaic virus and its coat protein. Virology 49:647–653
    [Google Scholar]
  59. Rowlands D. J., Sangar D. V., Brown E. 1971; Buoyant density of picornaviruses in caesium salts. Journal of General Virology 13:141–152
    [Google Scholar]
  60. Rueckert R. R. 1971; Picornaviral architecture. In Comparative Virology pp. 255–306 Edited by Maramorosch K., Kurstak H. London and New York: Academic Press;
    [Google Scholar]
  61. Rueckert R. R., Dunker A. K., Stoltzfus C. M. 1969; Mouse-Elberfeld virus: a model. Proceedings of the National Academy of Sciences of the United States of America 62:902–919
    [Google Scholar]
  62. Spaiir P. F., Gesteland R. E. 1968; Specific cleavage of bacteriophage R17 RNA by endonuclease isolated from E.coli MRE-600. Proceedings of the National Academy of Sciences of the United States of America 59:876–883
    [Google Scholar]
  63. Steitz J. A. 1968a; Identification of the A protein as a structural component of bacteriophage R17. Journal of Molecular Biology 33:923–936
    [Google Scholar]
  64. Steitz J. A. 1968b; Isolation of the A protein from bacteriophage R17. Journal of Molecular Biology 33:937–945
    [Google Scholar]
  65. Stoltzfus C. M., Rueckert R. R. 1972; Capsid polypeptides of Maus-Elberfeld virus, I. Amino acid composition and molecular ratios in the virion. Journal of Virology 10:347–355
    [Google Scholar]
  66. Summers D. F., Mafzel J. V. 1968; Evidence for large precursor proteins in poliovirus synthesis. Proceedings of the National Academy of Sciences of the United States of America 59:966–971
    [Google Scholar]
  67. Takebe L., Otsuki Y. 1969; Infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Proceedings of the National Academy of Sciences of the United States of America 64:843–848
    [Google Scholar]
  68. Tenntges D., Plus N. 1972; P virus of Drosophila melanogaster, as a new picorna virus. Journal of General Virology 16:103–109
    [Google Scholar]
  69. Valentine R. C., Ward R., Strand M. 1969; The replication cycle of RNA bacteriophages. Advances in Virus Research 15:1–59
    [Google Scholar]
  70. Viñuela E., Algranati I. D., Ochoa S. 1967; Synthesis of virus-specific proteins in Escherichia coli infected with the RNA bacteriophage MS2. European Journal of Biochemistry 1:3–11
    [Google Scholar]
  71. Watanabe I., Miyake T., Sakurai T., Shiba T., Ohno T. 1967a; Isolation and grouping of RN A phages. Proceedings of the Japanese Academy 43:204–209
    [Google Scholar]
  72. Watanabe I., Nishihara T., Kaneko H., Sakurai T., Osawa S. 1967b; Group characteristics of RNA phages. Proceedings of the Japanese Academy 43:210–213
    [Google Scholar]
  73. Weissmann C., Borst P., Burdon R. H., Billeter M. A., Ochoa S. 1964; Replication of viral RNA. 3. Double-stranded replicative form of MS2 phage RNA. Proceedings of the National Academy of Sciences of the United States of America 51:682–690
    [Google Scholar]
  74. Weissmann C., Feix G., Slor H., Pollet R. 1967; Replication of viral RNA. 14. Single-stranded minus strands as template for the synthesis of viral plus strands in vitro. Proceedings of the National Academy of Sciences of the United States of America 57:1870–1877
    [Google Scholar]
  75. Wood H. A. 1971; Buoyant density changes of cowpea mosaic virus components at different pH values. Virology 43:511–513
    [Google Scholar]
  76. Young N. A., Hover B. H., Martin M. A. 1968; Polynucleotide sequence homologies among polioviruses. Proceedings of the National Academy of Sciences of the United States of America 61:548–555
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-20-Supplement-43
Loading
/content/journal/jgv/10.1099/0022-1317-20-Supplement-43
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error