1887

Abstract

SUMMARY

The mol. wt. of the single-stranded RNA molecules synthesized in a cell-free system on simian virus 40 (SV40) DNA by RNA polymerase was determined at intervals after the initiation of the reaction. Chain elongation of the RNA, under the experimental conditions used, took place at an average rate of 5 nucleotides/s. Thus single-stranded RNA molecules of 1.5 × 10 mol. wt. resulting from continuous transcription of one turn of the circular SV40 genome did not appear until about 20 min after initiation of the reaction. After 40 to 80 min, molecules with mol. wt. equal to or greater than the mol. wt. of the DNA template strand (⩾ 1.5 × 10) accounted for 25 to 50% of the mass of the RNA population. Up to 25% of the RNA synthesized at that time had mol. wt. equal to or larger than 3 × 10. The results indicate that the cell-free system used does not contain specific factors or signals which would cause the RNA polymerase to terminate transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-17-1-69
1972-10-01
2022-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/17/1/JV0170010069.html?itemId=/content/journal/jgv/10.1099/0022-1317-17-1-69&mimeType=html&fmt=ahah

References

  1. Boedtker H. 1968; Dependence of the sedimentation coefficient on molecular weight of RNA after reaction with formaldehyde. Journal of Molecular Biology 35:61–70
    [Google Scholar]
  2. Bryan R. N., Gelfand D. H., Hayashi M. 1969; Initiation of SV40 DNA-directed protein synthesis with A-formylmethionine in vitro. Nature, London 224:1019–1021
    [Google Scholar]
  3. Burgess R. R. 1969a; A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. Journal of Biological Chemistry 244:6160–6167
    [Google Scholar]
  4. Burgess R. R. 1969b; Separation and characterization of the subunits of ribonucleic acid polymerase. Journal of Biological Chemistry 244:6168–6176
    [Google Scholar]
  5. Carp R. I., Sauer G., Sokol F. 1969; The effect of actinomycin D on the transcription and replication of simian virus 40 deoxyribonucleic acid. Virology 37:214–226
    [Google Scholar]
  6. Chamberlin M., Berg P. 1962; Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 48:81–94
    [Google Scholar]
  7. Crawford L. V., Black P. H. 1964; The nucleic acid of simian virus 40. Virology 24:388–392
    [Google Scholar]
  8. Crawford L. v., Follett E. A. C., Crawford E. M. 1966; An electron microscopic study of DNA from three tumor viruses. Journale de Microscopie 5:597–604
    [Google Scholar]
  9. Crawford L. V., Gesteland R. F., Rubin G. M., Hirt B. 1970 The use of mammalian DNAs to direct protein synthesis in extracts from E. coli.. In The Biology of Oncogenic Viruses (Proceedings of the Second Lepetit Colloquium) Edited by Silvestri L. G. pp. 104–109 Amsterdam: North Flolland Publishing Co;
    [Google Scholar]
  10. Cuzin F., Vogt M., Dieckmann M., Berg P. 1970; Induction of virus multiplication in 3T3 cells transformed by a thermo-sensitive mutant of polyoma virus. II. Formation of oligomeric polyoma DNA molecules. Journal of Molecular Biology 47:317–333
    [Google Scholar]
  11. Eigner J., Boedtker H., Michaels G. 1961; The thermal degradation of nucleic acid. Biochimica et biophysica acta 51:165–168
    [Google Scholar]
  12. Freifelder D., Davison P. F. 1962; Hyperchromicity and strand separation in bacterial DNA. Biophysical Journal 2:249–256
    [Google Scholar]
  13. Haselkorn R., Doty P. 1961; The reaction of formaldehyde with polynucleotides. Journal of Biological Chemistry 236:2738–2745
    [Google Scholar]
  14. Haselkorn R., Fox C. F. 1965; Synthesis and properties of a complex of polyriboguanylic acid and poly-ribocytidilic acid. Journal of Molecular Biology 13:780–790
    [Google Scholar]
  15. Hayward W. S., Green M. H. 1970; Properties of phage DNA-RNA polymerase complexes isolated from Escherichia coli (A). Biochimica et biophysica acta 209:58–74
    [Google Scholar]
  16. Herzberg M., Winocour E. 1970; Simian virus 40 deoxyribonucleic acid transcriptase in vitro: binding and transcription patterns with mammalian ribonucleic acid polymerase. Journal of Virology 6:667–676
    [Google Scholar]
  17. Hummeler K., Tomassini N., Sokol F. 1970; Morphological aspects of the uptake of simian virus 40 by permissive cells. Journal of Virology 6:87–93
    [Google Scholar]
  18. Kurland G. G. 1960; Molecular characterization of ribonucleic acid from Escherichia coli ribosomes. Journal of Molecular Biology 2:83–91
    [Google Scholar]
  19. Levin M. J., Crumpacker C. S., Lewis A. M. Jr., Oxman M. N., Henry P. H., Rowe W. P. 1971; Studies of nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses. II. Relationship Of Adenovirus 2-Deoxyribo-Nucleic Acid And Simian Virus 40 Deoxyribonucleic acid in the Ad2 + Nd1 Genome. Journal of Virology 7:343–351
    [Google Scholar]
  20. Levine A. S., Oxman M. N., Henry P. H., Levin M. J., Diamondopoulos O. T., Enders J. F. 1970; VirUS-specific deoxyribonucleic acid in simian virus 40-exposed hamster cells: correlation with S and T antigens. Journal of Virology 6:199–207
    [Google Scholar]
  21. Lozeron H. A., Szybalski W. 1966; Suppression of RNA precipitation during Cs2SO4 density gradient centrifugation. Biochemical and Biophysical Research Communications 23:612–618
    [Google Scholar]
  22. Mcconkey E. H., Hopkins J. W. 1969; Molecular weights of some HeLa ribosomal RNAs. Journal of Molecular Biology 39:545–550
    [Google Scholar]
  23. Martin M. A., Axelrod D. 1969; SV40 gene activity during lytic infection and in a series of SV40-trans-formed mouse cells. Proceedings of the National Academy of Sciences of the United States of America 64:1203–1210
    [Google Scholar]
  24. Petermann M. L., Pavlovec A. 1966; The subunits and structural ribonucleic acids of Jensen sarcoma ribosomes. Biochimica et biophysica acta 114:264–276
    [Google Scholar]
  25. Radloff R., Bauer W., Vinograd J. 1967; A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proceedings of the National Academy of Sciences of the United States of America 57:1514–1521
    [Google Scholar]
  26. Richardson J. P. 1970; Rho factor function in T4 RNA transcription. Cold Spring Harbor Symposium in Quantitative Biology 35:127–133
    [Google Scholar]
  27. Sakuma S., Watanabe Y. 1971; Unilateral synthesis of reovirus double-stranded ribonucleic acid by a cell-free replicase system. Journal of Virology 8:190–196
    [Google Scholar]
  28. Spirin A. S. 1963; Some problems concerning the macromolecular structure of ribonucleic acids. Progress in Nucleic Acid Research 1:301–345
    [Google Scholar]
  29. Tai H., O’Brien R. L. 1969; Multiplicity of viral genomes in an SV40-transformed hamster cell line. Virology 38:698–701
    [Google Scholar]
  30. Westphal H. 1970; SV40 DNA strand selection by Escherichia coli RNA polymerase. Journal of Molecular Biology 50:407–420
    [Google Scholar]
  31. Westphal H., Dulbecco R. 1968; Viral DNA in polyoma- and SV40-transformed cell lines. Proceedings of the National Academy of Sciences of the United States of America 59:1158–1165
    [Google Scholar]
  32. Westphal H., Kiehn E. D. 1970; The in vitro product of SV40 DNA transcription and its specific hybridization with DNA of SV40-transformed cells. Cold Spring Harbor Symposium in Quantitative Biology 35:819–821
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-17-1-69
Loading
/content/journal/jgv/10.1099/0022-1317-17-1-69
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error