Full text loading...
Abstract
Candida glabrata-caused candidiasis is growing but treatments remain limited by paucity of drug targets, intrinsic azole resistance and increasing resistance to other drug classes. Drug resistance is one of numerous virulence traits regulated by the chaperone, heat shock protein 90 (Hsp90) in Candida albicans via its interactions with 5% of the genome. Hsp90 also regulates key drug resistance mechanisms in C. glabrata, but little else was known about Hsp90 in this organism. Therefore, CgHsp90 interactions were elucidated by genetic and proteomic methods.
A genetic network was produced by a chemical-genetic, synthetic-sick screen on a gene-deletion library covering 16% of the genome; whilst quantitative proteomics was undertaken by tandem mass tagging on wild-type cells. Both experiments were undertaken at 30°C, 37°C and 39°C and Hsp90 was perturbed using sub-lethal concentrations of Hsp90 inhibitor. Efforts to identify Hsp90 interactors at these host-infection associated temperatures produced a genetic network of 68 genes and a protein network of 2298 proteins. Of these, 4 genes and 261 proteins interacted with Hsp90 at all three temperatures, indicating a core Hsp90 interaction network. Intriguingly, both networks had enrichment for the “antibiotic biosynthesis” GO term. Two genes, BCY1 and MCM16, were found to interact with Hsp90 at multiple temperatures in both networks. These data indicate the divergence of Hsp90 networks between C. glabrata and its close relatives and offer important targets for further research. Presented here is the first multi-omic interaction network in C. glabrata, focused on the virulence and drug resistance regulator, Hsp90.
- Published Online: