1887

Abstract

Stx bacteriophages are responsible for the dissemination and production of Shiga toxin genes (stx) across the Shigatoxigenic E. coli (STEC). These toxigenic bacteriophage hosts can cause severe, life-threatening illness, and Shiga toxin (Stx) is responsible for the severe nature of EHEC infection, a subset of pathogenic STEC. At the point of Stx phage infection, the injected phage DNA can direct its integration into the bacterial chromosome becoming a prophage; the host cell is then known as a lysogen. Unusually, our model Stx phage, Φ24B, can integrate into at least four distinct sites within the E. coli genome that shared no easily identifiable recognition sequence pattern. The identification of what are actually required for phage and bacterial DNAs recombination has been tested using both in vitro and in situ recombination assays. These assays enabled the simple manipulation of bacterial attachment site (attB) and phage attachment site (attP) sequences. The aim of the study is to fully characterize the requirements of this promiscuous integrase, carried by the Stx phage Φ24B (IntΦ24B), to drive integration. These assays enabled us to identify the minimal necessary flanking sequences for attB site identified (21 bp and 49 bp from the right and left the cross over region, respectively) and the attP site (200 bp each side). Furthermore, we identified that the Φ24B integrase does not need Integration Host Factor (IHF) to drive integration. Fi

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.ac2019.po0247
2019-04-08
2020-01-20
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.ac2019.po0247
Loading

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error