1887

Abstract

A microbiome is defined as the aggregate of all microbiota that reside in human digestive system and other tissues. This microbiota includes viruses, bacteria, fungi that live in various human organs and tissues like stomach, guts, oesophagus, mouth cavity, urinary tract, vagina, lungs, and skin. Almost 20 % of malignant cancers worldwide are related to microbial infections including bacteria, parasites, and viruses. The human body is constantly being attacked by microbes during its lifetime and microbial pathogens that have tumorigenic effects in 15–20 % of reported cancer cases. Recent scientific advances and the discovery of the effect of microbes on cancer as a pathogen or as a drug have significantly contributed to our understanding of the complex relationship between microbiome and cancer. The aim of this study is to overview some microbiomes that reside in the human body and their roles in cancer.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000247
2021-08-11
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/acmi/3/8/acmi000247.html?itemId=/content/journal/acmi/10.1099/acmi.0.000247&mimeType=html&fmt=ahah

References

  1. Mousavi SM, Montazeri A, Mohagheghi MA, Jarrahi AM, Harirchi I et al. Breast cancer in Iran: an epidemiological review. Breast J 2007; 13:383–391 [View Article] [PubMed]
    [Google Scholar]
  2. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer 6:583–592 [View Article] [PubMed]
    [Google Scholar]
  3. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164:337–340 [View Article] [PubMed]
    [Google Scholar]
  4. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010; 107:11971–11975 [View Article] [PubMed]
    [Google Scholar]
  5. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529:212–215 [View Article] [PubMed]
    [Google Scholar]
  6. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med 2015; 21:109–117 [View Article] [PubMed]
    [Google Scholar]
  7. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355–1359 [View Article] [PubMed]
    [Google Scholar]
  8. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444:1022–1023 [View Article] [PubMed]
    [Google Scholar]
  9. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA et al. Conducting a microbiome study. Cell 2014; 158:250–262 [View Article] [PubMed]
    [Google Scholar]
  10. Zur Hausen H. The search for infectious causes of human cancers: where and why. Virology 2009; 392:1–10 [View Article] [PubMed]
    [Google Scholar]
  11. Scherer D, Koepl LM, Poole EM, Balavarca Y, Xiao L et al. Genetic variation in UGT genes modify the associations of NSAIDs with risk of colorectal cancer: colon cancer family registry. Genes chromosomes cancer 2014; 53:568–578 [View Article] [PubMed]
    [Google Scholar]
  12. Coghill AE, Hildesheim A. Epstein-Barr virus antibodies and the risk of associated malignancies: review of the literature. Am J Epidemiol 2014; 180:687–695 [View Article] [PubMed]
    [Google Scholar]
  13. Boccellato F, Meyer TF. Bacteria moving into focus of human cancer. Cell Host & Microbe 2015; 17:728–730 [View Article]
    [Google Scholar]
  14. Chumduri C, Gurumurthy RK, Zietlow R, Meyer TF. Subversion of host genome integrity by bacterial pathogens. Nat Rev Mol Cell Biol 2016; 17:659–673 [View Article] [PubMed]
    [Google Scholar]
  15. Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel JP. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017; 15:109–128 [View Article] [PubMed]
    [Google Scholar]
  16. Busch VI. Verhandlungen ärztlicher Gesellschaften. Berliner Klin Wochenschrift 1866; 3:245–246
    [Google Scholar]
  17. Ryan RM, Green J, Lewis CE. Use of bacteria in anti-cancer therapies. Bioessays 2006; 28:84–94 [View Article] [PubMed]
    [Google Scholar]
  18. St Jean AT, Zhang MM, Forbes NS. Bacterial therapies: completing the cancer treatment toolbox. Curr Opin Biotechnol 2008; 19:511–517 [View Article] [PubMed]
    [Google Scholar]
  19. Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 2009; 18:1688–1694 [View Article] [PubMed]
    [Google Scholar]
  20. Ferrari P, Jenab M, Norat T, Moskal A, Slimani N et al. Lifetime and baseline alcohol intake and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition (EPIC. Int J Cancer 2007; 121:2065–2072 [View Article] [PubMed]
    [Google Scholar]
  21. Giovannucci E, Wu K. Cancers of the colon and rectum. Schottenfeld D, Fraumeni J. eds In Cancer Epidemiology and Prevention New York: Oxford University Press; 2006 pp 809–829
    [Google Scholar]
  22. Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J et al. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res 2014; 20:837–846 [View Article] [PubMed]
    [Google Scholar]
  23. Walther W, Petkov S, Kuvardina ON, Aumann J, Kobelt D et al. Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4- overexpressing tumors. Gene Ther 2012; 19:494–503 [View Article] [PubMed]
    [Google Scholar]
  24. Gao Z, McClane BA. Use of clostridium perfringens enterotoxin and the enterotoxin receptor-binding domain (C-CPE) for cancer treatment: opportunities and challenges. J Toxicol 2012; 2012:981626 [View Article] [PubMed]
    [Google Scholar]
  25. Smedley JG, McClane BA. Fine mapping of the n-terminal cytotoxicity region of clostridium perfringens enterotoxin by site-directed mutagenesis. Infect Immun 2004; 72:6914–6923 [View Article] [PubMed]
    [Google Scholar]
  26. Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007; 127:2525–2532 [View Article] [PubMed]
    [Google Scholar]
  27. Ding L, Lu Q, Lu Q, Chen YH. The claudin family of proteins in human malignancy: A clinical perspective. Cancer Manag Res 2013; 5:367–375 [View Article] [PubMed]
    [Google Scholar]
  28. Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA. CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J Biol Chem 2000; 275:18407–18417 [View Article] [PubMed]
    [Google Scholar]
  29. Chakrabarti G, Zhou X, McClane BA. Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin. Infect Immun 2003; 71:4260–4270 [View Article] [PubMed]
    [Google Scholar]
  30. Mees ST, Mennigen R, Spieker T, Rijcken E, Senninger N et al. Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: upregulation of claudin-1, claudin-3, claudin-4, and beta-catenin. Int J Colorectal Dis 2009; 24:361–368 [View Article] [PubMed]
    [Google Scholar]
  31. Neesse A, Griesmann H, Gress TM, Michl P. Claudin-4 as therapeutic target in cancer. Arch Biochem Biophys 2012; 524:64–70 [View Article] [PubMed]
    [Google Scholar]
  32. Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J et al. Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC Cancer 2017; 17:129 [View Article] [PubMed]
    [Google Scholar]
  33. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017; 14:356–365 [View Article] [PubMed]
    [Google Scholar]
  34. Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G et al. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis - current evidence and potential clinical applications. Aliment Pharmacol Ther 2014; 40:409–421 [View Article] [PubMed]
    [Google Scholar]
  35. Grönberg H. Prostate cancer epidemiology. Lancet 2003; 361:859–864 [View Article] [PubMed]
    [Google Scholar]
  36. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394–424 [View Article] [PubMed]
    [Google Scholar]
  37. Perdana NR, Mochtar CA, Umbas R, Hamid AR. The risk factors of prostate cancer and its prevention: A literature review. Acta Med Indones 2016; 48:228–238 [PubMed]
    [Google Scholar]
  38. Gralow JR, Biermann JS, Farooki A, Fornier MN, Gagel RF et al. NCCN task force report: Bone health in cancer care. J Natl Compr Canc Netw 2009; 7:S1–32 [View Article]
    [Google Scholar]
  39. Zhao M, Yang M, Li XM, Jiang P, Baranov E et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 2005; 102:755–760 [View Article] [PubMed]
    [Google Scholar]
  40. Zhao M, Yang M, Li XM, Jiang P, Baranov E et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 2005; 102:755–760 [View Article] [PubMed]
    [Google Scholar]
  41. Zhao M, Geller J, Ma H, Yang M, Penman S et al. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 2007; 104:10170–10174 [View Article] [PubMed]
    [Google Scholar]
  42. Momiyama M, Zhao M, Kimura H, Tran B, Chishima T et al. Inhibition and eradication of human glioma with tumor-targeting Salmonella typhimurium in an orthotopic nude-mouse model. Cell Cycle 2012; 11:628–632 [View Article] [PubMed]
    [Google Scholar]
  43. Liu F, Zhang L, Hoffman RM, Zhao M. Vessel destruction by tumor-targeting Salmonella typhimurium A1-R is enhanced by high tumor vascularity. Cell Cycle 2010; 9:4518–4524 [View Article] [PubMed]
    [Google Scholar]
  44. Zhao M, Geller J, Ma H, Yang M, Penman S et al. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 2007; 104:10170–10174 [View Article] [PubMed]
    [Google Scholar]
  45. Uchugonova A, Zhang Y, Salz R, Liu F, Suetsugu A et al. Imaging the different mechanisms of prostate cancer cell-killing by tumor-targeting salmonella typhimurium A1-R. Anticancer Res 2015; 35:5225–5229 [PubMed]
    [Google Scholar]
  46. Toneri M, Miwa S, Zhang Y, Hu C, Yano S et al. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models. Oncotarget 2015; 6:31335–31343 [View Article] [PubMed]
    [Google Scholar]
  47. Zhao M, Yang M, Li XM, Jiang P, Baranov E et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 2005; 102:755–760 [View Article] [PubMed]
    [Google Scholar]
  48. Timm C, Gupta A, Yin J. Robust kinetics of an RNA virus: Transcription rates are set by genome levels. Biotechnol Bioeng 2015; 112:1655–1662 [View Article] [PubMed]
    [Google Scholar]
  49. Weeks DL, Eskandari S, Scott DR, Sachs G. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 2000; 287:482–485 [View Article] [PubMed]
    [Google Scholar]
  50. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55:74–108 [View Article] [PubMed]
    [Google Scholar]
  51. Soleimani N. The role of hlicobacter pylori in gastric cancer and its clinical applications in cancer treatment. J Mazandaran Univ Med Sci 2017; 27:225–238
    [Google Scholar]
  52. Teimoorian F, Ranaei M, Hajian Tilaki K, Shokri Shirvani J, Vosough Z. Association of helicobacter pylori infection with colon cancer and adenomatous polyps. Iran J Pathol 2018; 13:325–332 [PubMed]
    [Google Scholar]
  53. Parkin DM. International variation. Oncogene 2004; 23:6329–6340 [View Article] [PubMed]
    [Google Scholar]
  54. Wroblewski LE, Peek RM, Wilson KT. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev 2010; 23:713–739 [View Article] [PubMed]
    [Google Scholar]
  55. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136:E359–86 [View Article] [PubMed]
    [Google Scholar]
  56. Konturek PC, Konturek SJ, Brzozowski T. Gastric cancer and Helicobacter pylori infection. J Physiol Pharmacol 2006; 57:51–65 [PubMed]
    [Google Scholar]
  57. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55:74–108 [View Article] [PubMed]
    [Google Scholar]
  58. Falush D, Kraft C, Taylor NS, Correa P, Fox JG et al. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci U S A 2001; 98:15056–15061 [View Article] [PubMed]
    [Google Scholar]
  59. Bjorkholm B, Sjolund M, Falk PG, Berg OG, Engstrand L et al. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci U S A 2001; 98:14607–14612 [View Article] [PubMed]
    [Google Scholar]
  60. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 1998; 279:373–377 [View Article] [PubMed]
    [Google Scholar]
  61. Graham DY. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology 2015; 148:719–31 [View Article]
    [Google Scholar]
  62. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med 2002; 347:1175–1186 [View Article] [PubMed]
    [Google Scholar]
  63. Liu J, He C, Chen M, Wang Z, Xing C et al. Association of presence/absence and on/off patterns of Helicobacter pylori oipA gene with peptic ulcer disease and gastric cancer risks: a meta-analysis. BMC Infect Dis 2013; 13:555 [View Article] [PubMed]
    [Google Scholar]
  64. Shah C, Khwaja S, Badiyan S, Wilkinson JB, Vicini FA et al. Brachytherapy-based partial breast irradiation is associated with low rates of complications and excellent cosmesis. Brachytherapy 2013; 12:278–284 [View Article] [PubMed]
    [Google Scholar]
  65. Soleimani N, Mobarez AM, Teymournejad O, Borhani K. Cytotoxicity effect of recombinant outer membrane inflammatory protein (oipA) of Helicobacter pylori on a breast cancer cell line. Modares J Med Sci 2014; 17:57–66
    [Google Scholar]
  66. Amedei A, Cappon A, Codolo G, Cabrelle A, Polenghi A et al. The neutrophil activating protein of Helicobacter pylori promotes Th1 immune responses. J Clin Invest 2006; 116:1092–1101 [View Article] [PubMed]
    [Google Scholar]
  67. D’Elios MM, Amedei A, Cappon A, Del Prete G, de Bernard M. The neutrophil activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol Med Microbiol 2007; 50:157–164 [View Article] [PubMed]
    [Google Scholar]
  68. Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA et al. SEER cancer statistics review, 1975-2002. National Cancer Institute; 2005
  69. Biarc J, Nguyen IS, Pini A, Gosse F, Richert S et al. Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S. bovis. Carcinogenesis 2004; 25:1477–1484 [View Article] [PubMed]
    [Google Scholar]
  70. Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg 2004; 139:760–765 [View Article] [PubMed]
    [Google Scholar]
  71. Kim NH, Park JP, Jeon SH, Lee YJ, Choi HJ et al. Purulent pericarditis caused by group G streptococcus as an initial presentation of colon cancer. J Korean Med Sci 2002; 17:571–573 [View Article] [PubMed]
    [Google Scholar]
  72. Zarkin BA, Lillemoe KD, Cameron JL, Effron PN, Magnuson TH et al. The triad of Streptococcus bovis bacteremia, colonic pathology, and liver disease. Ann Surg 1990; 211:786–791 [View Article] [PubMed]
    [Google Scholar]
  73. Bayliss R, Clarke C, Oakley CM, Somerville W, Whitfield AG et al. The bowel, the genitourinary tract, and infective endocarditis. Br Heart J 1984; 51:339–345 [View Article] [PubMed]
    [Google Scholar]
  74. Tsai CE, Chiu CT, Rayner CK, Wu K-L, Chiu YC et al. Associated factors in Streptococcus bovis bacteremia and colorectal cancer. Kaohsiung J Med Sci 2016; 32:196–200 [View Article] [PubMed]
    [Google Scholar]
  75. Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg 2004; 139:760–765 [View Article] [PubMed]
    [Google Scholar]
  76. Mayer DA, Fried B. The role of helminth infections in carcinogenesis. Adv Parasitol 2007; 65:239–296 [View Article] [PubMed]
    [Google Scholar]
  77. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 2006; 118:3030–3044 [View Article] [PubMed]
    [Google Scholar]
  78. Pagano JS, Blaser M, Buendia MA, Damania B, Khalili K et al. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 2004; 14:453–471 [View Article] [PubMed]
    [Google Scholar]
  79. Alibek K, Kakpenova A, Baiken Y. Role of infectious agents in the carcinogenesis of brain and head and neck cancers. Infect Agent Cancer 2013; 8:7 [View Article] [PubMed]
    [Google Scholar]
  80. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000; 30:1217–1258 [View Article] [PubMed]
    [Google Scholar]
  81. Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs. Infect Agent Cancer 2013; 8:8 [View Article] [PubMed]
    [Google Scholar]
  82. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363:1965–1976 [View Article] [PubMed]
    [Google Scholar]
  83. Laliberté J, Carruthers VB. Host cell manipulation by the human pathogen toxoplasma gondii. Cellular Mol Life Sci 2008; 65:1900–1915 [View Article]
    [Google Scholar]
  84. Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs. Infect Agent Cancer 2013; 8:8 [View Article] [PubMed]
    [Google Scholar]
  85. Vittecoq M, Elguero E, Lafferty KD, Roche B, Brodeur J et al. Brain cancer mortality rates increase with toxoplasma gondii seroprevalence in France. Infect Genet Evol 2012; 12:496–498 [View Article]
    [Google Scholar]
  86. Thomas F, Lafferty KD, Brodeur J, Elguero E, Gauthier-Clerc M et al. Incidence of adult brain cancers is higher in countries where the protozoan parasite toxoplasma gondii is common. Biol Lett 2012; 8:101–103 [View Article] [PubMed]
    [Google Scholar]
  87. Hong ST, Fang Y. Clonorchis sinensis and Clonorchiasis, an update. Parasitol Int 2012; 61:17–24 [View Article] [PubMed]
    [Google Scholar]
  88. Qian MB, Utzinger J, Keiser J, Zhou XN. Clonorchiasis. Lancet 2016; 387:800–810 [View Article] [PubMed]
    [Google Scholar]
  89. Gibson JB, Sobin LH. Histological Typing of Tumors of the Liver Biliary Tract and Pancreas Geneva: World Health Organization; 1978
    [Google Scholar]
  90. Blechacz B, Gores GJ. Cholangiocarcinoma: Advances on pathogenesis, diagnosis, and treatment. Hepatology 2008; 48:308–321 [View Article] [PubMed]
    [Google Scholar]
  91. Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T et al. Liver fluke induces cholangiocarcinoma. PLoS Med 2007; 4:e201 [View Article] [PubMed]
    [Google Scholar]
  92. Shin HR, Oh J-K, Lim MK, Shin A, Kong HJ et al. Descriptive epidemiology of cholangiocarcinoma and Clonorchiasis in Korea. J Korean Med Sci 2010; 25:1011–1016 [View Article] [PubMed]
    [Google Scholar]
  93. Kim YJ, Choi MH, Hong ST, Bae YM. Proliferative effects of excretory/secretory products from Clonorchis sinensis on the human epithelial cell line HEK293 via regulation of the transcription factor E2F1. Parasitol Res 2008; 102:411–417 [View Article] [PubMed]
    [Google Scholar]
  94. Kim YJ, Choi MH, Hong ST, Bae YM. Resistance of cholangiocarcinoma cells to parthenolide-induced apoptosis by the excretory-secretory products of Clonorchis sinensis. Parasitol Res 2009; 104:1011–1016 [View Article] [PubMed]
    [Google Scholar]
  95. Fava G, Lorenzini I. Molecular pathogenesis of cholangiocarcinoma. Int J Hepatol 2012; 2012:630543 [View Article] [PubMed]
    [Google Scholar]
  96. Howlader N, Noone AM, Krapcho M, Miller D, Brest A et al. SEER Cancer Statistics Review, 1975-2016, National Cancer Institute. Bethesda, MD; 2018 https://seer.cancer.gov/csr/1975_2016
  97. McDonald S, Lyall P, Israel L, Coates R, Frizelle F. Why barium enemas fail to identify colorectal cancers. Aust N Z J Surg 2001; 71:627–628 [View Article]
    [Google Scholar]
  98. Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and cancer: An update and emerging new evidence. Lancet Oncol 2017; 18:e457–e471 [View Article]
    [Google Scholar]
  99. Kalantari N, Gorgani-Firouzjaee T, Ghaffari S, Bayani M, Ghaffari T et al. Association between Cryptosporidium infection and cancer: A systematic review and meta-analysis. Parasitol Int 2020; 74:101979 [View Article] [PubMed]
    [Google Scholar]
  100. Sulzyc-Bielicka V, Kołodziejczyk L, Jaczewska S, Bielicki D, Kładny J et al. Prevalence of Cryptosporidium sp. in patients with colorectal cancer. Pol Przegl Chir 2012; 84:348–351 [View Article] [PubMed]
    [Google Scholar]
  101. Putignani L, Menichella D. Global distribution, public health and clinical impact of the protozoan pathogen Cryptosporidium. Interdiscip Perspect Infect Dis 2010; 2010:pii: 753512 [View Article] [PubMed]
    [Google Scholar]
  102. Martel C DE, Franceschi S. Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol 2009; 70:183–194 [View Article] [PubMed]
    [Google Scholar]
  103. CARMEN JC, SINAI AP. Suicide prevention: disruption of apoptotic pathways by protozoan parasites. Mol Microbiol 2007; 64:904–916 [View Article] [PubMed]
    [Google Scholar]
  104. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21:485–495 [View Article] [PubMed]
    [Google Scholar]
  105. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res 2014; 2:823–830 [View Article] [PubMed]
    [Google Scholar]
  106. Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138:2101–2114
    [Google Scholar]
  107. Başak F, Jainul MA, Yusof AM. Cryptosporidium -host interaction alters regulation of oncomiRNAS and tumor suppressor miRNA expression. J Biol Sci 2019; 19:272–279
    [Google Scholar]
  108. Sulżyc-Bielicka V, Kołodziejczyk L, Jaczewska S, Bielicki D, Safranow K et al. Colorectal cancer and Cryptosporidium spp. infection. PLoS ONE 2018; 13:e0195834 [View Article] [PubMed]
    [Google Scholar]
  109. Certad G, Creusy C, Ngouanesavanh T, Guyot K, Gantois N et al. Development of Cryptosporidium parvum induced gastro-intestinal neoplasia in SCID mice: severity of lesions is correlated with infection intensity. Am J Trop Med Hyg 2010; 82:257–265 [View Article] [PubMed]
    [Google Scholar]
  110. Lecoq H. Discovery of the First Virus, the Tobacco Mosaic Virus: 1892 or 1898 2001 pp 929–933
    [Google Scholar]
  111. Martin D, Gutkind JS. Human tumor associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 2008; 27:31–42
    [Google Scholar]
  112. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B et al. WHO international agency for research on cancer monograph working group. A review of human carcinogens Part B: biological agents. Lancet Oncol 2009; 10:321–322
    [Google Scholar]
  113. Javier RT, Butel JS. The history of tumor virology. Cancer Res 2008; 68:7693–7706 [View Article] [PubMed]
    [Google Scholar]
  114. Epstein MA, Achong BG, Barr YM. Virus particles in cultured Lymphoblasts from Burkitt’s lymphoma. Lancet 1964; 1:702–703 [View Article] [PubMed]
    [Google Scholar]
  115. Grywalska E, Markowicz J, Grabarczyk P, Pasiarski M, Rolinski J. Epstein-Barr virus associated lymphoproliferative disorders. Postepy Hig Med Dosw (Online) 2013; 67:481–490 [View Article] [PubMed]
    [Google Scholar]
  116. Allen U, Alfieri C, Preiksaitis J, Humar A, Moore D et al. Epstein-Barr virus infection in transplant recipients: Summary of a workshop on surveillance, prevention and treatment. Can J Infect Dis 2002; 13:89–99 [View Article] [PubMed]
    [Google Scholar]
  117. Nilsson K. Human B-lymphoid cell lines. Hum Cell 1992; 5:25–41 [PubMed]
    [Google Scholar]
  118. IARC monographs on the evaluation of carcinogenic risks to humans / World Health Organization. Int Agency Res Can 1997; 70:1–492
    [Google Scholar]
  119. Arbach H, Viglasky V, Lefeu F, Guinebretiere JM, Ramirez V et al. Epstein-Barr virus (EBV) genome and expression in breast cancer tissue: effect of EBV infection of breast cancer cells on resistance to paclitaxel (Taxol. J Virol 2006; 80:845–853 [View Article] [PubMed]
    [Google Scholar]
  120. Wright DH. What is Burkitt’s lymphoma and when is it endemic?. Blood 1999; 93:758 [View Article] [PubMed]
    [Google Scholar]
  121. Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nature Rev Immunol 2001; 1:75–82
    [Google Scholar]
  122. Burke AP, Yen TS, Shekitka KM, Sobin LH. Lymphoepithelial carcinoma of the stomach with Epstein–Barr virus demonstrated by polymerase chain reaction. Modern Pathol 1990; 3:377–380
    [Google Scholar]
  123. Takada K. Epstein–Barr virus and gastric carcinoma. Mol Pathol 2000; 53:255–261 [View Article] [PubMed]
    [Google Scholar]
  124. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer 2004; 4:757–768 [View Article] [PubMed]
    [Google Scholar]
  125. Chong JM, Sakuma K, Sudo M, Ushiku T, Uozaki H et al. Global and non–random CpG–island methylation in gastric carcinoma associated with Epstein–Barr virus. Cancer Sci 2003; 94:76–80 [View Article] [PubMed]
    [Google Scholar]
  126. Kang GH, Lee S, Kim WH, Lee HW, Kim JC et al. Epstein–Barr virus–positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype–positive gastric carcinoma. Am J Pathol 2002; 160:787–794 [View Article] [PubMed]
    [Google Scholar]
  127. Q.N V, Geradts J, Gulley ML, Boudreau DA, Bravo JC et al. Epstein–Barr virus in gastric adenocarcinomas: association with ethnicity and CDKN2A promoter methylation. J Clin Pathol 2002; 55:669–675 [View Article] [PubMed]
    [Google Scholar]
  128. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4:143–153 [View Article] [PubMed]
    [Google Scholar]
  129. Ramalingam D, Kieffer–Kwon P, Ziegelbauer JM. Emerging themes from EBV and KSHV microRNA targets. Viruses 2012; 4:1687–1710 [View Article] [PubMed]
    [Google Scholar]
  130. Akiba S, Koriyama C, Herrera–Goepfert R, Eizuru Y. Epstein–Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci 2008; 99:195–201 [View Article] [PubMed]
    [Google Scholar]
  131. Camargo MC, Murphy G, Koriyama C, Pfeiffer RM, Kim WH et al. Determinants of Epstein–Barr virus–positive gastric cancer: An international pooled analysis. Br J Cancer 2011; 105:38–43 [View Article] [PubMed]
    [Google Scholar]
  132. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA et al. Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 1984; 81:4510–4514 [View Article] [PubMed]
    [Google Scholar]
  133. Li Q, Spriggs MK, Kovats S, Turk SM, Comeau MR et al. Epstein–Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 1997; 71:4657–4662 [View Article] [PubMed]
    [Google Scholar]
  134. Tugizov SM, Berline JW, Palefsky JM. Epstein–Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med 2003; 9:307–314 [View Article] [PubMed]
    [Google Scholar]
  135. Borza CM, Hutt–Fletcher LM. Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat Med 2002; 8:594–599 [View Article] [PubMed]
    [Google Scholar]
  136. Chang Y, Tung CH, Huang YT, Lu J, Chen JY et al. Requirement for cell–to–cell contact in Epstein–Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 1999; 73:8857–8866 [View Article] [PubMed]
    [Google Scholar]
  137. Speck P, Longnecker R. Infection of breast epithelial cells with Epstein-Barr virus via cell-to-cell contact. J Natl Cancer Inst 2000; 92:1849–1851 [View Article]
    [Google Scholar]
  138. Jemal A, Bray F, Center MM, Ferlay J, Ward E et al. Global Cancer Statistics. Ca: a Cancer Journal for Clinicians 2011 pp 69–90
    [Google Scholar]
  139. Key TJ, Verkasalo PK, Banks E. Reviews Epidemiology of Breast Cancer 1865 pp 133–140
    [Google Scholar]
  140. Alibek K, Kakpenova A, Mussabekova A, Sypabekova M, Karatayeva N. Role of viruses in the development of breast cancer. Infect Agent Cancer 2013; 8:32
    [Google Scholar]
  141. Glaser SL, Hsu JL, Gulley ML. Epstein-barr virus and breast cancer: State of the evidence for viral carcinogenesis. Cancer Epidemiol Biomarkers Prev 2004; 13:688–697
    [Google Scholar]
  142. Labrecque LG, Barnes DM, Fentiman IS, Griffin BE. Epstein–Barr virus in epithelial cell tumors: a breast cancer study. Cancer Res 1995; 55:39–45 [PubMed]
    [Google Scholar]
  143. Kamranvar SA, Masucci MG. The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress. Leukemia 2011; 25:1017–1025 [View Article]
    [Google Scholar]
  144. Straat K, Liu C, Rahbar A, Zhu Q, Liu L et al. Activation of telomerase by human cytomegalovirus. J Natl Cancer Inst 2009; 101:488–497 [View Article] [PubMed]
    [Google Scholar]
  145. Speck P, Longnecker R. Infection of breast epithelial cells with Epstein-Barr virus via cell-to-cell contact. J Natl Cancer Inst 2000; 92:1849–1851 [View Article] [PubMed]
    [Google Scholar]
  146. Xue SA, Lampert IA, Haldane JS, Bridger JE, Griffin BE. Epstein-Barr virus gene expression in human breast cancer: protagonist or passenger. Br J Cancer 2003; 89:113–119 [View Article] [PubMed]
    [Google Scholar]
  147. Salahshournia Z, Hejazi H, Hadi F, Saeedi Z. the study of relationship between epstein - barr virus and breast cancer in isfahan province. J Breast Cancer 2018; 11:16
    [Google Scholar]
  148. Richardson AK, Currie MJ, Robinson BA, Morrin H, Phung Y et al. Cytomegalovirus and Epstein-barr virus in breast cancer. PLoS One 2015; 10:e0118989 [View Article]
    [Google Scholar]
  149. Joshi R, Quadri M, Gangane N, Joshi R, Gangane N. Association of Epstein barr virus infection (EBV) with breast cancer in rural indian women. PLoS One 2009; 4:e8180 [View Article] [PubMed]
    [Google Scholar]
  150. Jeong SW, Jang JY, Chung RT. Hepatitis C virus and hepatocarcinogenesis. Clin Mol Hepatol 2012; 18:347–356 [View Article] [PubMed]
    [Google Scholar]
  151. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nature Rev Gen 2009; 10:704–714 [View Article]
    [Google Scholar]
  152. Liang TJ, Heller T. Pathogenesis of hepatitis c associated hepatocellular carcinoma. Gastroenterology 2004; 127:62–71
    [Google Scholar]
  153. Yuen MF, Hou JL, Chutaputti A. Hepatocellular carcinoma in the Asia pacific region. J Gastroenterol Hepatol 2009; 24:346–353 [View Article] [PubMed]
    [Google Scholar]
  154. Brechot C. Pathogenesis of hepatitis b virus related hepatocellular carcinoma: Old and new paradigms. Gastroenterology 2004; 127:56–61
    [Google Scholar]
  155. Xu C, Zhou W, Wang Y, Qiao L. Hepatitis B virus induced hepatocellular carcinoma. Cancer lett 2013; 21:345–349
    [Google Scholar]
  156. Brechot C, Pourcel C, Louise A, Rain B, Tiollais P. Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 1980; 286:533–535 [View Article] [PubMed]
    [Google Scholar]
  157. Wang WH, Gregori G, Hullinger RL, Andrisani OM. Sustained activation of p38 mitogen activated protein kinase and c-Jun N-terminal kinase pathways by hepatitis B virus X protein mediates apoptosis via induction of Fas/FasL and tumor necrosis factor (TNF) receptor 1/TNF-alpha expression. Mol Cell Biol 2004; 24:10352–10365 [View Article] [PubMed]
    [Google Scholar]
  158. Henkler F, Hoare J, Waseem N, Goldin RD, McGarvey MJ et al. Intracellular localization of the hepatitis B virus HBx protein. J Gener Virol 2001; 82:871–882
    [Google Scholar]
  159. Kim S, Kim HY, Lee S, Kim SW, Sohn S et al. Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule and Dynein dependent manners. J Virol 2007; 81:1714–1726 [View Article] [PubMed]
    [Google Scholar]
  160. Rahmani Z, Huh KW, Lasher R, Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol 2000; 74:2840–2846 [View Article] [PubMed]
    [Google Scholar]
  161. Gillison ML, Shah KV. Human papillomavirus associated head and neck squamous cell carcinoma: mounting evidence for an etiologic role for human papillomavirus in a subset of head and neck cancers. Curr Opin Oncol 2001; 13:183–188 [View Article] [PubMed]
    [Google Scholar]
  162. Meisels A, Roy M, Fortier M, Morin C, Casas-Cordero M et al. Human papillomavirus infection of the cervix: the atypical condyloma. Acta Cytol 1981; 25:7–16 [PubMed]
    [Google Scholar]
  163. Hwang ES, Nottoli T, Dimaio D. The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 1995; 211:227–233 [View Article] [PubMed]
    [Google Scholar]
  164. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348:1546–1554 [View Article] [PubMed]
    [Google Scholar]
  165. Sing N. Trends in the epidemiology of opportunistic fungal infections: Predisposing factors of antimicrobial use practices (review article. Clin Infect Dis 2001; 23:1992–1996
    [Google Scholar]
  166. Wenzel RP. Severe sepsis-national estimates. Crit Care Med 2001; 29:1472–1474 [View Article] [PubMed]
    [Google Scholar]
  167. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J et al. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009; 30:6333–6340 [View Article] [PubMed]
    [Google Scholar]
  168. Pfaller MA. Enternational surveillance of blood stream infections due to Candida albicans species, frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole,voriconazole of isolates collected from 1997 through 1999 in the sentry antimicrobial surveillance program. J Clin Microbiol 2001; 39:3254–3259
    [Google Scholar]
  169. Dignani MC, Solomkin JS, Anaissie EJ. Candidiasis. Anaissie E, McGinnis M, Pfaller M. eds In In Clinical Mycology New York: Churchill Livingstone; 2003 pp 195–229
    [Google Scholar]
  170. Torosantucci A, Romagnoli G, Chiani P, Stringaro A, Crateri P et al. Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: a novel dimorphism-dependent mechanism to escape the host’s immune response. Infect Immun 2004; 72:833–843 [View Article] [PubMed]
    [Google Scholar]
  171. Carvalho LP, Bacellar O, Neves NA, de Jesus AR. Evaluation of cellular immune response in patients with recurrent candidiasis. Revista Sociedade Brasileira Medicina Tropical 2003; 36:571–576
    [Google Scholar]
  172. Murciano C, Villamon E, Oconnor JE, Gil ML. Killed Candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells. Infect Immun 2006; 74:1403–2 [View Article] [PubMed]
    [Google Scholar]
  173. Smail EH, Melnick DA, Ruggeri R, Diamond RD. A novel natural inhibitor from Candida albicans hyphae causing dissociation of the neutrophil respiratory burst response to chemotactic peptides from other post-activation events. J Immunol 1988; 140:3893–3899
    [Google Scholar]
  174. Danley DL, Hilger AE, Winkel CA. Generation of hydrogen peroxide by Candida albicans and influence on murine polymorphonuclear leukocyte activity. Infect Immun 1983; 40:97–102 [View Article] [PubMed]
    [Google Scholar]
  175. Holakuyee M, Yadegari MH, Saraf ZH, Mahdavi M, Eskandari A. Evaluation of the effect of fungal infections (candidiasis) on tumor survival and tumor volume and ratio of T-cell(CD4/CD8) infiltrated to tumor in mice with breast cancer. Kowsar Medical Journal 2007; 12:29–40
    [Google Scholar]
  176. Balloy V, Chignard M. The innate immune response to Aspergillus fumigatus. Microbes Infect 2009; 11:919–927 [View Article] [PubMed]
    [Google Scholar]
  177. Segal BH, Walsh TJ. Current approaches to diagnosis and treatment of invasive aspergillosis. Am J Respir Crit Care Med 2005; 173:707–717 [View Article] [PubMed]
    [Google Scholar]
  178. Cenci E, Mencacci A, Fè d’Ostiani C, Del Sero G, Mosci P et al. Cytokine and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J Infect Dis 1998; 178:1750–1760 [View Article] [PubMed]
    [Google Scholar]
  179. Cenci E, Perito S, Enssle KH, Mosci P, Latgé JP et al. Th1 and Th2 cytokines in mice with invasive aspergillosis. Infect Immun 1997; 65:564–570 [View Article] [PubMed]
    [Google Scholar]
  180. Grazziutti ML, Rex JH, Cowart RE, Anaissie EJ, Ford A et al. Aspergillus fumigatus conidia induce a Th1-type cytokine response. J Infect Dis 1997; 176:1579–1583 [View Article] [PubMed]
    [Google Scholar]
  181. Segal BH. Role of macrophages in host defense against Aspergillosis and strategies for immune augmentation. Oncologist 2007; 12:7–13 [View Article] [PubMed]
    [Google Scholar]
  182. Romani L. Immunity to fungal infections. Nat Rev Immunol 2004; 4:1–23 [View Article] [PubMed]
    [Google Scholar]
  183. Nagai H, Guo J, Choi H, Kurup VP. Interferon-g and tumor necrosis factor-a protect mice from invasive Aspergillosis. J Infect Dis 1995; 172:1554–1560 [View Article] [PubMed]
    [Google Scholar]
  184. Rex JH, Bennett JE, Gallin JI, Malech HL, DeCarlo ES et al. In vivo interferon-γ augments in vitro ability of chronic granulomatous disease neutrophils to damage Aspergillus hyphae. J Infect Dis 1991; 163:849–852 [View Article] [PubMed]
    [Google Scholar]
  185. Sohrabi N, Tebyanyan M, Mahdavi M. Evaluation of th1 and TH2 cytokine network in Aspergilus infected tumor bearing mice. J Fasa Univ Med Sci 2012; 2:1–5
    [Google Scholar]
  186. Ryan P, Hurley SF, Johnson AM, Salzberg M, Lee MW et al. Tumours of the brain and presence of antibodies to toxoplasma gondii. Int J Epidemiol 1993; 22:412–419 [View Article] [PubMed]
    [Google Scholar]
  187. Cong W, Liu GH, Meng QF, Dong W, Qin SY et al. Toxoplasma gondii infection in cancer patients: prevalence, risk factors, genotypes and association with clinical diagnosis. Cancer Lett 2015; 359:307–313 [View Article] [PubMed]
    [Google Scholar]
  188. Bonnet M, Guinebretiere JM, Kremmer E, Grunewald V, Benhamou E et al. Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 1999; 91:1376–1381 [View Article] [PubMed]
    [Google Scholar]
  189. Brink AA, van Den Brule AJ, van Diest P, Meijer CJ. Re: detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 2000; 92:655–656 [View Article] [PubMed]
    [Google Scholar]
  190. Chu PG, Chang KL, Chen YY, Chen WG, Weiss LM. No significant association of Epstein-Barr virus infection with invasive breast carcinoma. Am J Pathol 2001; 159:571–578 [View Article] [PubMed]
    [Google Scholar]
  191. Grinstein S, Preciado MV, Gattuso P, Chabay PA, Warren WH et al. Demonstration of Epstein-Barr virus in carcinomas of various sites. Cancer Res 2002; 62:4876–4878 [PubMed]
    [Google Scholar]
  192. Ribeiro-Silva A, Ramalho LN, Garcia SB, Zucoloto S. Does the correlation between EBNA-1 and p63 expression in breast carcinomas provide a clue to tumorigenesis in Epstein-Barr virus-related breast malignancies?. Braz J Med Biol Res 2004; 37:89–95 [View Article] [PubMed]
    [Google Scholar]
  193. Preciado MV, Chabay PA, De Matteo EN, Gonzalez P, Grinstein S et al. Epstein-Barr virus in breast carcinoma in Argentina. Arch Pathol Lab Med 2005; 129:377–381 [View Article] [PubMed]
    [Google Scholar]
  194. Fawzy S, Sallam M, Awad NM. Detection of Epstein-Barr virus in breast carcinoma in Egyptian women. Clin Biochem 2008; 41:486–492 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000247
Loading
/content/journal/acmi/10.1099/acmi.0.000247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error