1887

Abstract

The rapid spread of resistance among extended-spectrum β-lactamase (ESBL)-producing is a serious problem around the world. It results in serious clinical complications in humans and has become a global threat. Therefore, this systematic review and meta-analysis was aimed to estimate the pooled prevalence of ESBL-producing in different clinical samples in Ethiopia.

A systematic search was conducted on PubMed, Web of Science, Embase, Google Scholar and the Cochrane Library. All identified observational studies reporting the prevalence of ESBL-producing from clinical samples in Ethiopia were included. Four authors independently extracted data and analysed using R software version 3.6.1 and STATA statistical software version 13. A random-effects model was computed to estimate the pooled prevalence of ESBL-producing in Ethiopia.

Of 142 articles reviewed, 14 studies that fulfilled the inclusion criteria were included in the meta-analysis. The pooled prevalence of ESBL-producing in the different clinical specimens in Ethiopia was 49 % (95 % CI: 39, 60). was the leading ESBL-producing followed by and with a prevalence of 74, 67 and 60 %, respectively. ESBL-producing isolates showed a high rate of resistance to cefotaxime, ceftriaxone, ceftazidime, Amoxicillin clavulanic acid (AMC), ampicillin and aztreonam. The better options for the treatment of ESBL-producing are amikacin and Imipenem.

The magnitude of ESBL-producing in different clinical samples in Ethiopia is alarmingly high and represents a threat to human health. Hence, a coordinated effort needs to be implemented for the prevention and control of these .

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000195
2021-01-28
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/acmi/3/3/acmi000195.html?itemId=/content/journal/acmi/10.1099/acmi.0.000195&mimeType=html&fmt=ahah

References

  1. Chiu C-W, Li M-C, Ko W-C, Li C-W, Chen P-L, Chang C-M et al. Clinical impact of gram-negative nonfermenters on adults with community-onset bacteremia in the emergency department. J Microbiol Immunol Infect 2015; 48:92–100 [View Article] [PubMed]
    [Google Scholar]
  2. Ventola CL. The antibiotic resistance crisis: Part 1: causes and threats. P T 2015; 40:277 [PubMed]
    [Google Scholar]
  3. Gelband H, Molly Miller P, Pant S, Gandra S, Levinson J et al. The state of the world’s antibiotics 2015. Wound Healing Southern Africa 2015; 8:30–34
    [Google Scholar]
  4. de La Blanchardière A, Dargère S, Guérin F, Daurel C, Saint-Lorant G et al. Non-carbapenem therapy of urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae. Medecine et maladies Infectieuses 2015; 45:169–172
    [Google Scholar]
  5. UDo H, Services H. Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention 20131–113
    [Google Scholar]
  6. Kakati B, Agarwal S, Gupta S. Emerging issues regarding management of MDR non-fermenting gram negative ventilator associated pneumonia in a rural catering tertiary care hospital. J Med Sci Clin Res 2015; 4:13232–13238
    [Google Scholar]
  7. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17:1791.
    [Google Scholar]
  8. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006; 34:S20–S28 [View Article] [PubMed]
    [Google Scholar]
  9. Dogan A, Lasch P, Neuschl C, Millrose MK, Alberts R et al. Atr-Ftir spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed bxd recombinant inbred mouse strains. BMC genomics 2013; 14:386
    [Google Scholar]
  10. Aiken AM, Mturi N, Njuguna P, Mohammed S, Berkley JA et al. Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi district Hospital, Kenya: a prospective cohort study. The Lancet 2011; 378:2021–2027
    [Google Scholar]
  11. Abdallah H, Wintermans B, Reuland E, Koek A, Al Naiemi N et al. Extended-spectrum β-lactamase-and carbapenemase-producing Enterobacteriaceae isolated from Egyptian patients with suspected blood stream infection. PloS one. 2015; 10:
    [Google Scholar]
  12. McDonald M, Blondeau JM. Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones. J Cataract Refract Surg 2010; 36:1588–1598 [View Article]
    [Google Scholar]
  13. Organization WH Antimicrobial Resistance: Global Report on Surveillance World Health Organization; 2014
    [Google Scholar]
  14. Duthey B. Priority Medicines for Europe and the World a Public Health Approach to Innovation 6 WHO Background Paper; 2013
    [Google Scholar]
  15. Fournier PE, Richet H, Weinstein RA. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 2006; 42:692–699 [View Article] [PubMed]
    [Google Scholar]
  16. Bassetti M, Ginocchio F, Mikulska M. New Treatment Options Against Gram-Negative Organisms Springer; 2011 pp 501–515
    [Google Scholar]
  17. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clinical microbiology reviews 2005; 18:657–686
    [Google Scholar]
  18. Pitout JDD, Laupland KB. Extended-Spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008; 8:159–166 [View Article] [PubMed]
    [Google Scholar]
  19. Alvarez-Uria G, Gandra S, Mandal S, Laxminarayan R. Global forecast of antimicrobial resistance in invasive isolates of Escherichia coli and Klebsiella pneumoniae. Int J Infect Dis 2018; 68:50–53 [View Article] [PubMed]
    [Google Scholar]
  20. Murray TS, Peaper DR. The contribution of extended-spectrum β-lactamases to multidrug-resistant infections in children. Curr Opin Pediatr 2015; 27:124–131 [View Article]
    [Google Scholar]
  21. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2017; 72:2145–2155 [View Article]
    [Google Scholar]
  22. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 2010; 54:969–976 [View Article] [PubMed]
    [Google Scholar]
  23. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol 2005; 8:19–32
    [Google Scholar]
  24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS medicine. 2009; 6:e1000100
    [Google Scholar]
  25. Moher D, Pham B, Lawson M, Klassen T. The inclusion of reports of randomised trials published in languages other than English in systematic reviews. Health Technol Assess 2003; 7:1–90
    [Google Scholar]
  26. Armstrong R, Waters E, Jackson N. Systematic Reviews of Health Promotion and Public Health Interventions Melbourne: University of Melbourne; 2007
    [Google Scholar]
  27. Cheng Z, Lu Y, Cao Q, Qin L, Pan Z. Clinical features and chest CT manifestations of coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China. Am J Roentgenol 20201–6
    [Google Scholar]
  28. Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I 2 in assessing heterogeneity may mislead. BMC medical research methodology 2008; 8:79
    [Google Scholar]
  29. Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health 2014; 72:39 [View Article]
    [Google Scholar]
  30. Thompson SG, Sharp SJ. Explaining heterogeneity in meta‐analysis: a comparison of methods. Stat Med 1999; 18:2693–2708
    [Google Scholar]
  31. Cochran WG. The comparison of percentages in matched samples. Biometrika 1950; 37:256–266
    [Google Scholar]
  32. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997; 315:629–634
    [Google Scholar]
  33. Sharma M, Pathak S, Srivastava P. Prevalence and antibiogram of extended spectrum β-lactamase (ESBL) producing gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J Clin Diagn Res 2013; 7:2173 [View Article] [PubMed]
    [Google Scholar]
  34. Osthoff M, McGuinness SL, Wagen AZ, Eisen DP. Urinary tract infections due to extended-spectrum beta-lactamase-producing gram-negative bacteria: identification of risk factors and outcome predictors in an Australian tertiary referral hospital. Int J Infect Dis 2015; 34:79–83 [View Article] [PubMed]
    [Google Scholar]
  35. Shrestha A, Bajracharya AM, Subedi H, Turha RS, Kafle S et al. Multi-drug resistance and extended spectrum beta lactamase producing gram negative bacteria from chicken meat in Bharatpur metropolitan, Nepal. BMC research notes. 2017; 10:574
    [Google Scholar]
  36. Farzana R, Shamsuzzaman SM, Mamun KZ, Shears P. Antimicrobial susceptibility pattern of extended spectrum beta-lactamase producing gram-negative bacteria isolated from wound and urine in a tertiary care Hospital, Dhaka City, Bangladesh. Southeast Asian J Trop Med Public Health 2013; 44:96–103 [PubMed]
    [Google Scholar]
  37. Fong JJ, Rosé L, Radigan EA. Clinical outcomes with ertapenem as a first-line treatment option of infections caused by extended-spectrum β-lactamase producing gram-negative bacteria. Ann Pharmacother 2012; 46:347–352 [View Article]
    [Google Scholar]
  38. Nasa P, Juneja D, Singh O, Dang R, Singh A. An observational study on bloodstream extended-spectrum beta-lactamase infection in critical care unit: incidence, risk factors and its impact on outcome. Eur J Intern Med 2012; 23:192–195 [View Article] [PubMed]
    [Google Scholar]
  39. Dandachi I, Fayad E, El-Bazzal B, Daoud Z, Rolain J-M. Prevalence of extended-spectrum beta-lactamase-producing gram-negative bacilli and emergence of mcr-1 colistin resistance gene in Lebanese swine farms. Microb Drug Resist 2019; 25:233–240 [View Article] [PubMed]
    [Google Scholar]
  40. Leylabadlo HE, Pourlak T, Bialvaei AZ, Aghazadeh M, Asgharzadeh M, Kafil HS et al. Extended-Spectrum beta-lactamase producing gram negative bacteria in Iran: a review. Afr J Infect Dis 2017; 11:39–53 [View Article] [PubMed]
    [Google Scholar]
  41. Shaikh S, Fatima J, Shakil S, Danish Rizvi SM, Kamal MA. Prevalence of multidrug resistant and extended spectrum beta-lactamase producing Pseudomonas aeruginosa in a tertiary care hospital. Saudi J Biol Sci 2015; 22:62–64 [View Article] [PubMed]
    [Google Scholar]
  42. Doi Y, Adams-Haduch JM, Peleg AY, D'Agata EMC. The role of horizontal gene transfer in the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in an endemic setting. Diagn Microbiol Infect Dis 2012; 74:34–38 [View Article] [PubMed]
    [Google Scholar]
  43. Ogefere HO, Aigbiremwen PA, Omoregie R. Extended-spectrum beta-lactamase (ESBL)–producing Gram-negative isolates from urine and wound specimens in a tertiary health facility in southern Nigeria. Trop J Pharm Res 2015; 14:1089–1094 [View Article]
    [Google Scholar]
  44. Rezai MS, Salehifar E, Rafiei A, Langaee T, Rafati M et al. Characterization of multidrug resistant extended-spectrum beta-lactamase-producing Escherichia coli among uropathogens of pediatrics in North of Iran. Biomed Res Int 2015; 2015:1–7 [View Article] [PubMed]
    [Google Scholar]
  45. Perez F, Bonomo RA. Editorial commentary: bloodstream infection caused by extended-spectrum β-Lactamase–Producing gram-negative bacteria: how to define the best treatment regimen?. Oxford University Press 2015
    [Google Scholar]
  46. Degnan LA, Milstone AM, Diener-West M, Lee CKK. Extended-Spectrum beta-lactamase bacteria from urine isolates in children. J Pediatr Pharmacol Ther 2015; 20:373–377 [View Article] [PubMed]
    [Google Scholar]
  47. Tschudin-Sutter S, Frei R, Dangel M, Stranden A, Widmer AF. Rate of transmission of extended-spectrum beta-lactamase-producing Enterobacteriaceae without contact isolation. Clin Infect Dis 2012; 55:1505–1511 [View Article] [PubMed]
    [Google Scholar]
  48. Upadhyay S, Joshi SR. TEM mediated extended spectrum cephalosporin resistance in clinical & environmental isolates of Gram negative bacilli: A report from northeast India. Indian J Med Res 2015; 142:614 [View Article] [PubMed]
    [Google Scholar]
  49. Kang C-I, Chung DR, Ko KS, Peck KR, Song J-H et al. Risk factors for infection and treatment outcome of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. Ann Hematol 2012; 91:115–121 [View Article] [PubMed]
    [Google Scholar]
  50. Zaniani FR, Meshkat Z, Naderi Nasab M, Khaje-Karamadini M, Ghazvini K et al. The prevalence of TEM and SHV genes among extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae . Iran J Basic Med Sci 2012; 15:654 [PubMed]
    [Google Scholar]
  51. Tham J, Walder M, Melander E, Odenholt I. Prevalence of extended-spectrum beta-lactamase-producing bacteria in food. Infect Drug Resist 2012; 5:143
    [Google Scholar]
  52. Saeidi S, Amini Boroujeni N, Ahmadi H, Hassanshahian M. Antibacterial activity of some plant extracts against extended- spectrum beta-lactamase producing Escherichia coli isolates. Jundishapur J Microbiol 2015; 8:e15434 [View Article] [PubMed]
    [Google Scholar]
  53. Oli AN, Eze DE, Gugu TH, Ezeobi I, Maduagwu UN et al. Multi-antibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to the effective treatment of wound and skin infections. Pan Afr Med J 2017; 27: [View Article]
    [Google Scholar]
  54. Engda T, Moges F, Gelaw A, Eshete S, Mekonnen F. Prevalence and antimicrobial susceptibility patterns of extended spectrum beta-lactamase producing Entrobacteriaceae in the University of Gondar referral hospital environments, Northwest Ethiopia. BMC Res Notes 2018; 11:335 [View Article] [PubMed]
    [Google Scholar]
  55. Legese MH, Weldearegay GM, Asrat D. Extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae among Ethiopian children. Infect Drug Resist 2017; 10:27 [View Article] [PubMed]
    [Google Scholar]
  56. Bitew A. High prevalence of multi-drug resistance and extended spectrum beta lactamase production in non-fermenting gram-negative bacilli in Ethiopia. Infect Dis Res Treat 2019; 12:1178633719884951
    [Google Scholar]
  57. Abayneh M, Tesfaw G, Woldemichael K, Yohannis M, Abdissa A. Assessment of extended-spectrum β-lactamase (ESBLs)–producing Escherichia coli from minced meat of cattle and swab samples and hygienic status of meat retailer shops in Jimma town, Southwest Ethiopia. BMC Infect Dis 2019; 19:897
    [Google Scholar]
  58. Beyene D, Bitew A, Fantew S, Mihret A, Evans M. Multidrug-resistant profile and prevalence of extended spectrum β-lactamase and carbapenemase production in fermentative Gram-negative bacilli recovered from patients and specimens referred to national reference laboratory, Addis Ababa, Ethiopia. PloS one 2019; 14:
    [Google Scholar]
  59. Desta K, Woldeamanuel Y, Azazh A, Mohammod H, Desalegn D et al. High gastrointestinal colonization rate with extended-spectrum β-lactamase-producing Enterobacteriaceae in hospitalized patients: emergence of carbapenemase-producing K. pneumoniae in Ethiopia. PloS one 2016; 11:
    [Google Scholar]
  60. Abayneh M, Tesfaw G, Abdissa A. Isolation of extended-spectrum β-lactamase- (ESBL-) producing Escherichia coli and Klebsiella pneumoniae from patients with community-onset urinary tract infections in Jimma University Specialized Hospital, Southwest Ethiopia. Can J Infect Dis Med Microbiol 2018; 2018:1–8 [View Article] [PubMed]
    [Google Scholar]
  61. Gashaw M, Berhane M, Bekele S, Kibru G, Teshager L et al. Emergence of high drug resistant bacterial isolates from patients with health care associated infections at Jimma University medical center: a cross sectional study. Antimicrob Resist Infect Control 2018; 7:138 [View Article] [PubMed]
    [Google Scholar]
  62. Zeynudin A, Pritsch M, Schubert S, Messerer M, Liegl G et al. Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC infectious diseases 2018; 18:524
    [Google Scholar]
  63. Hoy D, Brooks P, Woolf A, Blyth F, March L et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol 2012; 65:934–939 [View Article] [PubMed]
    [Google Scholar]
  64. Adler A, Katz DE, Marchaim D. The continuing plague of extended-spectrum β-lactamase–producing Enterobacteriaceae infections. Infectious Disease Clinics 2016; 30:347–375
    [Google Scholar]
  65. Habeeb MA, Sarwar Y, Ali A, Salman M, Haque A. Rapid emergence of ESBL producers in E. coli causing urinary and wound infections in Pakistan. Pakistan journal of medical sciences 2013; 29:540
    [Google Scholar]
  66. Moyo SJ, Aboud S, Kasubi M, Lyamuya EF, Maselle SY. Antimicrobial resistance among producers and non-producers of extended spectrum beta-lactamases in urinary isolates at a tertiary hospital in Tanzania. BMC Res Notes 2010; 3:348
    [Google Scholar]
  67. Ouedraogo A-S, Sanou M, Kissou A, Sanou S, Solaré H et al. High prevalence of extended-spectrum ß-lactamase producing Enterobacteriaceae among clinical isolates in Burkina Faso. BMC infectious diseases 2016; 16:326
    [Google Scholar]
  68. Obeng-Nkrumah N, Twum-Danso K, Krogfelt KA, Newman MJ. High levels of extended-spectrum beta-lactamases in a major teaching hospital in Ghana: the need for regular monitoring and evaluation of antibiotic resistance. Am J Trop Med Hyg 2013; 89:960–964 [View Article] [PubMed]
    [Google Scholar]
  69. Rao SP, Rama PS, Gurushanthappa V, Manipura R, Srinivasan K. Extended-Spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae: a multi-centric study across Karnataka. J Lab Physicians 2014; 6:7 [View Article] [PubMed]
    [Google Scholar]
  70. Fam N, Leflon-Guibout V, Fouad S, Aboul-Fadl L, Marcon E et al. CTX-M-15-producing Escherichia coli clinical isolates in Cairo (Egypt), including isolates of clonal complex ST10 and clones ST131, ST73, and ST405 in both community and hospital settings. Microbial Drug Resistance 2011; 17:67–73
    [Google Scholar]
  71. Nijssen S, Florijn A, Bonten MJM, Schmitz FJ, Verhoef J et al. Beta-Lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. Int J Antimicrob Agents 2004; 24:585–591 [View Article] [PubMed]
    [Google Scholar]
  72. Kateregga JN, Kantume R, Atuhaire C, Lubowa MN, Ndukui JG. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital, Uganda. BMC Pharmacol Toxicol 2015; 16:14 [View Article] [PubMed]
    [Google Scholar]
  73. Abera B, Kibret M, Mulu W. Extended-Spectrum beta (β)-lactamases and Antibiogram in Enterobacteriaceae from clinical and drinking water Sources from Bahir Dar City, Ethiopia. PloS one 2016; 11:
    [Google Scholar]
  74. Alfola M, Kamel Z, Nada M, Rashed LA, El-Awady BA. Phenotypic and Genotypic Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumonia isolates from Patient’s Urine specimens. Int Arabic J Antimicrob Agents 2017; 6:
    [Google Scholar]
  75. Mansouri S, Abbasi S. Prevalence of multiple drug resistant clinical isolates of extended-spectrum beta-lactamase producing Enterobacteriaceae in Southeast Iran; 2010
  76. Kumar D, Singh AK, Ali MR, Chander Y. Antimicrobial susceptibility profile of extended spectrum β-lactamase (ESBL) producing Escherichia coli from various clinical samples. Infect Dis 2014; 7:IDRT. S13820 [View Article]
    [Google Scholar]
  77. Hooja S, Pal N, Karadiya R, Sharma R, Mishra R et al. Prevalence and antimicrobial susceptibility of extended spectrum β-lactamases (ESBL) producing Escherichia coli and Klebsiella pneumoniae isolates in a tertiary care hospital in north-west India. Int J Curr Microbiol App Sci 2016; 5:430–439
    [Google Scholar]
  78. Alipourfard I, Nili NY. Antibiogram of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae isolated from hospital samples. Bangladesh J Med Microbiol 2010; 4:32–36 [View Article]
    [Google Scholar]
  79. Özadam A, Özpinar H. Phenotypic determination of ESBL-and Ampc-producing Enterobacteriaceae in cheese samples. Int J Food Eng Res 2016; 2:59–70
    [Google Scholar]
  80. Alyamani EJ, Khiyami AM, Booq RY, Majrashi MA, Bahwerth FS et al. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann Clin Microbiol Antimicrob 2017; 16:1 [View Article]
    [Google Scholar]
  81. Schwaber MJ, Navon-Venezia S, Schwartz D, Carmeli Y. High levels of antimicrobial coresistance among extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2005; 49:2137–2139 [View Article] [PubMed]
    [Google Scholar]
  82. Esiobu N, Armenta L, Ike J. Antibiotic resistance in soil and water environments. Int J Environ Health Res 2002; 12:133–144 [View Article] [PubMed]
    [Google Scholar]
  83. Leski TA, Taitt CR, Bangura U, Stockelman MG, Ansumana R et al. High prevalence of multidrug resistant Enterobacteriaceae isolated from outpatient urine samples but not the hospital environment in bo, Sierra Leone. BMC infectious diseases 2016; 16:167
    [Google Scholar]
  84. Moges F, Setegn Eshetie WA, Mekonnen F, Dagnew M, Endale A et al. High prevalence of extended-spectrum beta-lactamase-producing gram-negative pathogens from patients attending Felege Hiwot comprehensive specialized Hospital, Bahir Dar, Amhara region. PloS one 2019; 14:
    [Google Scholar]
  85. Jacoby GA, Medeiros AA. More extended-spectrum beta-lactamases. Antimicrobial Agents and Chemotherapy 1991; 35:1697
    [Google Scholar]
  86. Teklu DS, Negeri AA, Legese MH, Bedada TL, Woldemariam HK et al. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob Resist Infect Control 2019; 8:39 [View Article] [PubMed]
    [Google Scholar]
  87. Solomon FB, Wadilo F, Tufa EG, Mitiku M. Extended spectrum and metalo beta-lactamase producing airborne Pseudomonas aeruginosa and Acinetobacter baumanii in restricted settings of a referral hospital: a neglected condition. Antimicrob Resist Infect Control 2017; 6:106 [View Article] [PubMed]
    [Google Scholar]
  88. Eguale T, Birungi J, Asrat D, Njahira MN, Njuguna J et al. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrob Resist Infect Control 2017; 6:13 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000195
Loading
/content/journal/acmi/10.1099/acmi.0.000195
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error