1887

Abstract

In the last 10 years, the barriers preventing the uptake of foreign DNA by clinical isolates have been identified and powerful mutagenesis techniques such as allelic exchange are now possible in most genotypes. However, these targeted approaches can still be cumbersome, and the construction of unmarked deletions/point mutations may take many weeks or months. Here, we introduce a streamlined allelic exchange protocol using IMxxB and the plasmid pIMAY-Z. With this optimized approach, a site-specific mutation can be introduced into in 5 days, from the start of cloning to isolation of genomic DNA for confirmatory whole-genome sequencing. This streamlined protocol considerably reduces the time required to introduce a specific, unmarked mutation in and should dramatically improve the scalability of gene-function studies.

Funding
This study was supported by the:
  • National Health and Medical Research Council (Award GNT1145075)
    • Principle Award Recipient: TimothyP Stinear
  • This information is licensed under the Open Government Licence 3.0. This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000193
2021-01-07
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/acmi/3/2/acmi000193.html?itemId=/content/journal/acmi/10.1099/acmi.0.000193&mimeType=html&fmt=ahah

References

  1. O'Reilly M, de Azavedo JC, Kennedy S, Foster TJ. Inactivation of the alpha-haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies on the expression of its haemolysins. Microb Pathog 1986; 1:125–138 [View Article][PubMed]
    [Google Scholar]
  2. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis . mBio 2012; 3:11 [View Article][PubMed]
    [Google Scholar]
  3. Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB et al. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2016; 2:16194 [View Article][PubMed]
    [Google Scholar]
  4. Bojer MS, Wacnik K, Kjelgaard P, Gallay C, Bottomley AL et al. SosA inhibits cell division in Staphylococcus aureus in response to DNA damage. Mol Microbiol 2019; 112:1116–1130 [View Article][PubMed]
    [Google Scholar]
  5. Lopez MS, Tan IS, Yan D, Kang J, McCreary M et al. Host-derived fatty acids activate type VII secretion in Staphylococcus aureus . Proc Natl Acad Sci U S A 2017; 114:11223–11228 [View Article][PubMed]
    [Google Scholar]
  6. Lee JYH, Carter GP, Pidot SJ, Guérillot R, Seemann T et al. Mining the methylome reveals extensive diversity in Staphylococcus epidermidis restriction modification. mBio 2019; 10:e02451-19 [View Article][PubMed]
    [Google Scholar]
  7. Heilbronner S, Hanses F, Monk IR, Speziale P, Foster TJ. Sortase A promotes virulence in experimental Staphylococcus lugdunensis endocarditis. Microbiology 2013; 159:2141–2152 [View Article][PubMed]
    [Google Scholar]
  8. Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ. Complete bypass of restriction systems for major Staphylococcus aureus lineages. mBio 2015; 6:12 [View Article][PubMed]
    [Google Scholar]
  9. Le Lam TN, Morvan C, Liu W, Bohn C, Jaszczyszyn Y et al. Finding sRNA-associated phenotypes by competition assays: An example with Staphylococcus aureus . Methods 2017; 117:21–27 [View Article][PubMed]
    [Google Scholar]
  10. Green R, Rogers EJ. Chapter 28. Transformation of chemically competent E. coli . In Lorsch J. editor Methods Enzymol 529: Academic Press; 2013 pp 329–336
    [Google Scholar]
  11. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580 [View Article][PubMed]
    [Google Scholar]
  12. Zhang Y, Werling U, Edelmann W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 2012; 40:e55 [View Article][PubMed]
    [Google Scholar]
  13. Liu P, Jenkins NA, Copeland NG. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 2003; 13:476–484 [View Article][PubMed]
    [Google Scholar]
  14. Datsenko KA, Wanner BL. One-Step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  15. Motohashi K. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol 2015; 15:47 [View Article][PubMed]
    [Google Scholar]
  16. Richter D, Bayer K, Toesko T, Schuster S. ZeBRα a universal, multi-fragment DNA-assembly-system with minimal hands-on time requirement. Sci Rep 2019; 9:2980 [View Article][PubMed]
    [Google Scholar]
  17. Chaudhuri RR, Allen AG, Owen PJ, Shalom G, Stone K et al. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 2009; 10:291 [View Article][PubMed]
    [Google Scholar]
  18. Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S et al. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 2015; 16:252 [View Article][PubMed]
    [Google Scholar]
  19. Helle L, Kull M, Mayer S, Marincola G, Zelder M-E et al. Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus . Microbiology 2011; 157:3314–3323 [View Article][PubMed]
    [Google Scholar]
  20. Endres JL, Yajjala VK, Fey PD, Bayles KW. Construction of a Sequence-Defined transposon mutant Library in Staphylococcus aureus . Methods Mol Biol 2019; 2016:29–37 [View Article][PubMed]
    [Google Scholar]
  21. Bae T, Schneewind O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 2006; 55:58–63 [View Article][PubMed]
    [Google Scholar]
  22. Goncheva MI, Flannagan RS, Sterling BE, Laakso HA, Friedrich NC et al. Stress-induced inactivation of the Staphylococcus aureus purine biosynthesis repressor leads to hypervirulence. Nat Commun 2019; 10:775 [View Article][PubMed]
    [Google Scholar]
  23. Monk IR, Howden BP, Seemann T, Stinear TP. Correspondence: Spontaneous secondary mutations confound analysis of the essential two-component system WalKR in Staphylococcus aureus . Nat Commun 2017; 8:4 [View Article]
    [Google Scholar]
  24. Sun F, Cho H, Jeong DW, Li C, He C et al. Aureusimines in Staphylococcus aureus are not involved in virulence. PLoS One 2010; 5:e15703 [View Article][PubMed]
    [Google Scholar]
  25. Monk IR, Foster TJ. Genetic manipulation of Staphylococci—breaking through the barrier. Front Cell Infect Microbiol 2012; 2:9 [View Article]
    [Google Scholar]
  26. Arnaud M, Chastanet A, Debarbouille M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 2004; 70:6887–6891 [View Article][PubMed]
    [Google Scholar]
  27. Chen J, Ram G, Yoong P, Penades JR, Shopsin B et al. An rpsL-based allelic exchange vector for Staphylococcus aureus . Plasmid 2015; 79:8–14 [View Article][PubMed]
    [Google Scholar]
  28. Kato F, Sugai M. A simple method of markerless gene deletion in Staphylococcus aureus . J Microbiol Methods 2011; 87:76–81 [View Article][PubMed]
    [Google Scholar]
  29. Sato'o Y, Hisatsune J, Yu L, Sakuma T, Yamamoto T et al. Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference. PLoS One 2018; 13:e0185987 [View Article][PubMed]
    [Google Scholar]
  30. Penewit K, Holmes EA, McLean K, Ren M, Waalkes A et al. Efficient and scalable precision genome editing in Staphylococcus aureus through conditional recombineering and CRISPR/Cas9-mediated counterselection. MBio 2018; 9: [View Article]
    [Google Scholar]
  31. Gu T, Zhao S, Pi Y, Chen W, Chen C et al. Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase. Chem Sci 2018; 9:3248–3253 [View Article][PubMed]
    [Google Scholar]
  32. Liu Q, Jiang Y, Shao L, Yang P, Sun B et al. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus . Acta Biochim Biophys Sin 2017; 49:764–770 [View Article][PubMed]
    [Google Scholar]
  33. Dong X, Jin Y, Ming D, Li B, Dong H et al. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus . J Microbiol Methods 2017; 139:79–86 [View Article][PubMed]
    [Google Scholar]
  34. Jiang W, Oikonomou P, Tavazoie S. Comprehensive genome-wide perturbations via CRISPR adaptation reveal complex genetics of antibiotic sensitivity. Cell 2020; 180:e311002–1017 [View Article][PubMed]
    [Google Scholar]
  35. Depardieu F, Bikard D. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels. Methods 2020; 172:61–75 [View Article][PubMed]
    [Google Scholar]
  36. Schuster CF, Wiedemann DM, Kirsebom FCM, Santiago M, Walker S et al. High-throughput transposon sequencing highlights the cell wall as an important barrier for osmotic stress in methicillin resistant Staphylococcus aureus and underlines a tailored response to different osmotic stressors. Mol Microbiol 2020; 113:699–717 [View Article][PubMed]
    [Google Scholar]
  37. Coe KA, Lee W, Stone MC, Komazin-Meredith G, Meredith TC et al. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus . PLoS Pathog 2019; 15:e1007862 [View Article][PubMed]
    [Google Scholar]
  38. vez R, Haag AF, Dorado-Morales P, Lasa I. Rebooting synthetic Phage-Inducible chromosomal islands: one method to forge them all. BioDesign Research 2020; 2020:14
    [Google Scholar]
  39. Yepes A, Koch G, Waldvogel A, Garcia-Betancur JC, Lopez D. Reconstruction of mreB expression in Staphylococcus aureus via a collection of new integrative plasmids. Appl Environ Microbiol 2014; 80:3868–3878 [View Article][PubMed]
    [Google Scholar]
  40. Austin CM, Bose JL. Genetic manipulations of staphylococcal chromosomal DNA. Methods Mol Biol 2020; 2069:103–111 [View Article][PubMed]
    [Google Scholar]
  41. Chen W, Ji Q. Genetic manipulation of MRSA using CRISPR/Cas9 technology. Methods Mol Biol 2020; 2069:113–124 [View Article][PubMed]
    [Google Scholar]
  42. Darnell RL, Knottenbelt MK, Todd Rose FO, Monk IR, Stinear TP et al. Genome wide profiling of the Enterococcus faecalis transcriptional response to Teixobactin reveals CroRS as an essential regulator of antimicrobial tolerance. mSphere 2019; 4:e00228-19 [View Article][PubMed]
    [Google Scholar]
  43. Pidot SJ, Gao W, Buultjens AH, Monk IR, Guerillot R et al. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med 2018; 10:10 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000193
Loading
/content/journal/acmi/10.1099/acmi.0.000193
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error