1887

Abstract

Multidrug-resistant bacteria have been increasingly described in healthcare institutions, however community resistance also seems to be emerging. an intestinal commensal bacteria, is also a pathogen and represents an important intestinal reservoir of resistance. Our aim was the study of the intestinal colonization and of the persistence of antibiotic resistant intestinal bacteria in healthy university students of Porto, in the north of Portugal. Samples from 30 university students were collected and analysed. Two isolates were randomly obtained from each student and Gram-negative bacilli resistant to antibiotics were studied. In addition, we evaluated changes in the Gram-negative intestinal colonization of ten university students in a short period of time. Molecular characterization showed a high presence of in commensal . Gram-negative bacteria with intrinsic and extrinsic resistance were isolated, namely spp., spp. and spp. We isolated three ESBL-producing from two students. These isolates showed group 1 (=1), group 9 (=2), (=2), (=1) and (=2) genes. Additionally, they showed specific virulence factors and conjugational transfer of antibiotic resistance and virulence genes. One spp. isolate resistant to carbapenems was detected colonizing one student. Our results confirm that healthy young adults may be colonized with commensals showing clinically relevant antibiotic resistance mechanisms, creating a risk of silent spread of these bacteria in the community.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000182
2020-11-25
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/acmi/3/1/acmi000182.html?itemId=/content/journal/acmi/10.1099/acmi.0.000182&mimeType=html&fmt=ahah

References

  1. Ruppé E, Andremont A. Causes, consequences, and perspectives in the variations of intestinal density of colonization of multidrug-resistant enterobacteria. Front Microbiol 2013; 4:129 [View Article][PubMed]
    [Google Scholar]
  2. Karanika S, Karantanos T, Arvanitis M, Grigoras C, Mylonakis E. Fecal colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae and risk factors among healthy individuals: a systematic review and Metaanalysis. Clin Infect Dis 2016; 63:310–318 [View Article][PubMed]
    [Google Scholar]
  3. Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S et al. Intestinal Colonization Traits of Pandemic Multidrug-Resistant Escherichia coli ST131. J Infect Dis 2018; 218:979–990 [View Article][PubMed]
    [Google Scholar]
  4. Rodrigues C, Machado E, Fernandes S, Peixe L, Novais Ângela. An update on faecal carriage of ESBL-producing Enterobacteriaceae by Portuguese healthy humans: detection of the H30 subclone of B2-ST131 Escherichia coli producing CTX-M-27. J Antimicrob Chemother 2016; 71:1120–1122 [View Article][PubMed]
    [Google Scholar]
  5. Maharjan A, Bhetwal A, Shakya S, Satyal D, Shah S et al. Ugly bugs in healthy guts! Carriage of multidrug-resistant and ESBL-producing commensal Enterobacteriaceae in the intestine of healthy Nepalese adults. Infect Drug Resist 2018; 11:547–554 [View Article][PubMed]
    [Google Scholar]
  6. Chirindze LM, Zimba TF, Sekyere JO, Govinden U, Chenia HY et al. Faecal colonization of E. coli and Klebsiella spp. producing extended-spectrum beta-lactamases and plasmid-mediated AmpC in Mozambican university students. BMC Infect Dis 2018; 18:244 [View Article][PubMed]
    [Google Scholar]
  7. Decker BK, Lau AF, Dekker JP, Spalding CD, Sinaii N et al. Healthcare personnel intestinal colonization with multidrug-resistant organisms. Clin Microbiol Infect 2018; 24:82.e1–8282 [View Article][PubMed]
    [Google Scholar]
  8. Hertz F, Nielsen K, Frimodt-Møller N. Selection of ESBL-producing E. coli in a mouse intestinal colonization model antibiotic resistance protocols. Methods Mol Biol 2018; 1736:105–115
    [Google Scholar]
  9. Ebrahimi F, Mózes J, Monostori J, Gorácz O, Fésűs A et al. Comparison of rates of fecal colonization with extended-spectrum beta-lactamase-producing enterobacteria among patients in different wards, outpatients and medical students. Microbiol Immunol 2016; 60:285–294 [View Article][PubMed]
    [Google Scholar]
  10. Angelin M, Forsell J, Granlund M, Evengård B, Palmgren H et al. Risk factors for colonization with extended-spectrum beta-lactamase producing Enterobacteriaceae in healthcare students on clinical assignment abroad: A prospective study. Travel Med Infect Dis 2015; 13:223–229 [View Article][PubMed]
    [Google Scholar]
  11. Woerther P-L, Lepeule R, Burdet C, Decousser J-W, Ruppé Étienne et al. Carbapenems and alternative β-lactams for the treatment of infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: what impact on intestinal colonisation resistance?. Int J Antimicrob Agents 2018; 52:762–770 [View Article][PubMed]
    [Google Scholar]
  12. Pires J, Kuenzli E, Hauser C, Tinguely R, Kasraian S et al. Intestinal colonisation with extended-spectrum cephalosporin-resistant Enterobacteriaceae in different populations in Switzerland: prevalence, risk factors and molecular features. J Glob Antimicrob Resist 2018; 12:17–19 [View Article][PubMed]
    [Google Scholar]
  13. Pires J, Kuenzli E, Kasraian S, Tinguely R, Furrer H et al. Polyclonal intestinal colonization with extended-spectrum cephalosporin-resistant Enterobacteriaceae upon traveling to India. Front Microbiol 2016; 7:1069 [View Article][PubMed]
    [Google Scholar]
  14. Mota R, Pinto M, Palmeira J, Gonçalves D, Ferreira H. Intestinal microbiota as a reservoir of extended-spectrum β-lactamase-producing Escherichia coli: An exploratory study in healthy university students. J Glob Antimicrob Resist 2018; 14:10–11 [View Article]
    [Google Scholar]
  15. CLSI Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Sixth Informational Supplement. CLSI document M100-S26 Wayne, PA: Clinical and Laboratory Standards Institute; 2016
    [Google Scholar]
  16. Pires J, Novais A, Peixe L. Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol 2013; 51:4281–4283 [View Article][PubMed]
    [Google Scholar]
  17. Garcia-Migura L, Hendriksen RS, Fraile L, Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol 2014; 170:1–9 [View Article][PubMed]
    [Google Scholar]
  18. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 2010; 8:207–217 [View Article][PubMed]
    [Google Scholar]
  19. Bailey JK, Pinyon JL, Anantham S, Hall RM. Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol 2010; 59:1331–1339 [View Article][PubMed]
    [Google Scholar]
  20. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae . J Antimicrob Chemother 2010; 65:490–495 [View Article][PubMed]
    [Google Scholar]
  21. Woerther P-L, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 2013; 26:744–758 [View Article][PubMed]
    [Google Scholar]
  22. Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U et al. Escherichia coli: an old Friend with new tidings. FEMS Microbiol Rev 2016; 40:437–463 [View Article][PubMed]
    [Google Scholar]
  23. Cho S-H, Lim Y-S, Park M-S, Kim S-H, Kang Y-H. Prevalence of antibiotic resistance in Escherichia coli fecal isolates from healthy persons and patients with diarrhea. Osong Public Health Res Perspect 2011; 2:41–45 [View Article][PubMed]
    [Google Scholar]
  24. Erb A, Stürmer T, Marre R, Brenner H. Prevalence of antibiotic resistance in Escherichia coli: overview of geographical, temporal, and methodological variations. Eur J Clin Microbiol Infect Dis 2007; 26:83–90 [View Article][PubMed]
    [Google Scholar]
  25. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. Journal of Antimicrobial Chemotherapy 2017; 72:2145–2155 [View Article]
    [Google Scholar]
  26. Geser N, Stephan R, Korczak BM, Beutin L, Hächler H. Molecular identification of extended-spectrum-β-lactamase genes from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob Agents Chemother 2012; 56:1609–1612 [View Article][PubMed]
    [Google Scholar]
  27. Vinué L, Sáenz Y, Martínez S, Somalo S, Moreno MA et al. Prevalence and diversity of extended-spectrum beta-lactamases in faecal Escherichia coli isolates from healthy humans in Spain. Clin Microbiol Infect 2009; 15:954–957 [View Article][PubMed]
    [Google Scholar]
  28. Hammerum AM, Lester CH, Jakobsen L, Porsbo LJ. Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. Clin Microbiol Infect 2011; 17:566–568 [View Article][PubMed]
    [Google Scholar]
  29. Gonçalves D, Cecílio P, Ferreira H. Nursing homes and long-term care facilities: Reservoirs of CTX-M-15-producing Escherichia coli O25b-ST131 in Portugal. J Glob Antimicrob Resist 2016; 7:69–71 [View Article][PubMed]
    [Google Scholar]
  30. Massot M, Daubié A-S, Clermont O, Jauréguy F, Couffignal C et al. Phylogenetic, virulence and antibiotic resistance characteristics of commensal strain populations of Escherichia coli from community subjects in the Paris area in 2010 and evolution over 30 years. Microbiology 2016; 162:642–650 [View Article][PubMed]
    [Google Scholar]
  31. Barreto Miranda I, Ignatius R, Pfüller R, Friedrich-Jänicke B, Steiner F et al. High carriage rate of ESBL-producing Enterobacteriaceae at presentation and follow-up among travellers with gastrointestinal complaints returning from India and Southeast Asia. J Travel Med 2016; 23:tav024 [View Article][PubMed]
    [Google Scholar]
  32. Tängdén T, Cars O, Melhus A, Löwdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 2010; 54:3564–3568 [View Article][PubMed]
    [Google Scholar]
  33. Davin-Regli A, Pagès J-M, Davin A. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 2015; 6:392 [View Article][PubMed]
    [Google Scholar]
  34. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D et al. Bad bugs, no drugs: no ESKAPE! an update from the infectious diseases Society of America. Clin Infect Dis 2009; 48:1–12 [View Article][PubMed]
    [Google Scholar]
  35. Valenza G, Tuschak C, Nickel S, Krupa E, Lehner-Reindl V et al. Prevalence, antimicrobial susceptibility, and genetic diversity of Pseudomonas aeruginosa as intestinal colonizer in the community. Infect Dis 2015; 47:654–657 [View Article]
    [Google Scholar]
  36. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010; 156:3216–3223 [View Article][PubMed]
    [Google Scholar]
  37. Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest 2014; 124:4212–4218 [View Article][PubMed]
    [Google Scholar]
  38. Gerber GK. The dynamic microbiome. FEBS Lett 2014; 588:4131–4139 [View Article][PubMed]
    [Google Scholar]
  39. Pfennigwerth N, Geis G, Gatermann SG, Kaase M. Description of IMP-31, a novel metallo-β-lactamase found in an ST235 Pseudomonas aeruginosa strain in Western Germany. J Antimicrob Chemother 2015; 70:1973–1980 [View Article][PubMed]
    [Google Scholar]
  40. Rieber H, Frontzek A, Baum H, Pfeifer Y. Emergence of Metallo-β-Lactamases GIM-1 and VIM in multidrug-resistant Pseudomonas aeruginosa in North Rhine–Westphalia, Germany. J Antimicrob Chemother 2012; 64:1043–1045
    [Google Scholar]
  41. Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. J Antimicrob Chemother 2014; 69:1804–1814 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000182
Loading
/content/journal/acmi/10.1099/acmi.0.000182
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error