1887

Abstract

High-throughput sequencing has allowed culture-independent investigation into a wide variety of microbiomes, but sequencing studies still require axenic culture experiments to determine ecological roles, confirm functional predictions and identify useful compounds and pathways. We have developed a new method for culturing and isolating multiple microbial species with overlapping ecological niches from a single environmental sample, using temperature-gradient incubation. This method was more effective than standard serial dilution-to-extinction at isolating methanotrophic bacteria. It also highlighted discrepancies between culture-dependent and -independent techniques; 16S rRNA gene amplicon sequencing of the same sample did not accurately reflect cultivatable strains using this method. We propose that temperature-gradient incubation could be used to separate out and study previously ‘unculturable’ strains, which co-exist in both natural and artificial environments.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000081
2019-12-02
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/acmi/10.1099/acmi.0.000081/acmi000081.html?itemId=/content/journal/acmi/10.1099/acmi.0.000081&mimeType=html&fmt=ahah

References

  1. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C et al. Best practices for analysing microbiomes. Nat Rev Microbiol 2018;16: 410– 422 [CrossRef]
    [Google Scholar]
  2. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013;499: 431– 437 [CrossRef]
    [Google Scholar]
  3. Dopheide A, Xie D, Buckley TR, Drummond AJ, Newcomb RD. Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods Ecol Evol 2019;10: 120– 133 [CrossRef]
    [Google Scholar]
  4. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. Pcr-Induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 2005;71: 8966– 8969 [CrossRef]
    [Google Scholar]
  5. Fouhy F, Clooney AG, Stanton C, Claesson MJ, Cotter PD. 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol 2016;16: 123 [CrossRef]
    [Google Scholar]
  6. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2016;2: 16242 [CrossRef]
    [Google Scholar]
  7. Lennon JT, Muscarella ME, Placella SA, Lehmkuhl BK, How LBK. How, when, and where Relic DNA affects microbial diversity. MBio 2018;9: e00637-18 [CrossRef]
    [Google Scholar]
  8. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 2007;73: 5111– 5117 [CrossRef]
    [Google Scholar]
  9. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S et al. Characterization of the gut microbiome using 16S or shotgun Metagenomics. Front Microbiol 2016;7: 459 [CrossRef]
    [Google Scholar]
  10. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014;42: D633– D642 [CrossRef]
    [Google Scholar]
  11. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. Silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35: 7188– 7196 [CrossRef]
    [Google Scholar]
  12. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012;6: 610– 618 [CrossRef]
    [Google Scholar]
  13. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36: 996 1004 [CrossRef]
    [Google Scholar]
  14. Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012;18: 1185– 1193 [CrossRef]
    [Google Scholar]
  15. Smith DP, Peay KG, Depth S, Replication NPCR. Improves ecological inference from next generation DNA sequencing. PLoS One 2014;9: e90234
    [Google Scholar]
  16. Ni J, Li X, He Z, Xu M. A novel method to determine the minimum number of sequences required for reliable microbial community analysis. J Microbiol Methods 2017;139: 196– 201 [CrossRef]
    [Google Scholar]
  17. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 2017;27: 626– 638 [CrossRef]
    [Google Scholar]
  18. Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 2005;1: e24– 12 [CrossRef]
    [Google Scholar]
  19. Garza DR, Dutilh BE. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci 2015;72: 4287– 4308 [CrossRef]
    [Google Scholar]
  20. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 2016;7: 744 [CrossRef]
    [Google Scholar]
  21. Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 1985;39: 321– 346 [CrossRef]
    [Google Scholar]
  22. Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol 2018;16: 540– 550 [CrossRef]
    [Google Scholar]
  23. Bittar F, Keita MB, Lagier J-C, Peeters M, Delaporte E et al. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Sci Rep 2014;4: 7174 [CrossRef]
    [Google Scholar]
  24. Zehavi T, Probst M, Mizrahi I. Insights into culturomics of the rumen microbiome. Front Microbiol 2018;9: 9 [CrossRef]
    [Google Scholar]
  25. Ferrario C, Alessandri G, Mancabelli L, Gering E, Mangifesta M et al. Untangling the cecal microbiota of feral chickens by culturomic and metagenomic analyses. Environ Microbiol 2017;19: 4771– 4783 [CrossRef]
    [Google Scholar]
  26. Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS et al. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 2016;9: 171 [CrossRef]
    [Google Scholar]
  27. Cho G-Y, Han S-I, Whang K-S. Phylogenetic diversity of bacterial communities in a gray solar saltern and isolation of extremely halophilic bacteria using culturomics. The Korean Journal of Microbiology 2017;53: 29– 38 [CrossRef]
    [Google Scholar]
  28. Thomson R, Pickup R, Porter J. A novel method for the isolation of motile bacteria using gradient culture systems. J Microbiol Methods 2001;46: 141– 147 [CrossRef]
    [Google Scholar]
  29. Yamamura H, Hayakawa M, Iimura Y. Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. J Appl Microbiol 2003;95: 677– 685 [CrossRef]
    [Google Scholar]
  30. Aoi Y, Kaneko Y, Tsuneda S. pH-Gradient ion-exchange microbial cell chromatography as a simple method for microbial separation. J Biosci Bioeng 2017;123: 431– 436 [CrossRef]
    [Google Scholar]
  31. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ et al. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 2010;49: 277– 288 [CrossRef]
    [Google Scholar]
  32. Strong PJ, Xie S, Clarke WP. Methane as a resource: can the methanotrophs add value?. Environ Sci Technol 2015;49: 4001– 4018 [CrossRef]
    [Google Scholar]
  33. Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 2016;215: 314– 323 [CrossRef]
    [Google Scholar]
  34. Bowman J. The Methanotrophs - The families Methylococcaceae and Methylocystaceae In Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes5, 3rd ed. Springer; 2006; pp 266– 289
    [Google Scholar]
  35. One thousand springs: the microbiology of geothermal hotsprings in New Zealand: GNS science;. University of Waikato 2013
    [Google Scholar]
  36. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2016;18: 1403– 1414 [CrossRef]
    [Google Scholar]
  37. Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 2015;75: 129– 137 [CrossRef]
    [Google Scholar]
  38. Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Institute 2010;11583827:
    [Google Scholar]
  39. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010;26: 2460– 2461 [CrossRef]
    [Google Scholar]
  40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75: 7537– 7541 [CrossRef]
    [Google Scholar]
  41. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7: 335– 336 [CrossRef]
    [Google Scholar]
  42. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73: 5261– 5267 [CrossRef]
    [Google Scholar]
  43. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41: D590– D596 [CrossRef]
    [Google Scholar]
  44. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25: 3389– 3402 [CrossRef]
    [Google Scholar]
  45. Corteselli EM, Aitken MD, Singleton DR. Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int J Syst Evol Microbiol 2017;67: 925– 931 [CrossRef]
    [Google Scholar]
  46. Teramoto M, Yagyu K-I, Nishijima M, K-i Y. Perspicuibacter marinus gen. nov., sp. nov., a semi-transparent bacterium isolated from surface seawater, and description of Arenicellaceae fam. nov. and Arenicellales ord. nov. Int J Syst Evol Microbiol 2015;65: 353– 358 [CrossRef]
    [Google Scholar]
  47. Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 1970;61: 205– 218 [CrossRef]
    [Google Scholar]
  48. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173: 697– 703 [CrossRef]
    [Google Scholar]
  49. Costello AM, Lidstrom ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 1999;65: 5066– 5074
    [Google Scholar]
  50. Bourne DG, McDonald IR, Murrell JC. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 2001;67: 3802– 3809 [CrossRef]
    [Google Scholar]
  51. Holmes AJ, Costello A, Lidstrom ME, Murrell JC. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 1995;132: 203– 208 [CrossRef]
    [Google Scholar]
  52. Auman AJ, Stolyar S, Costello AM, Lidstrom ME. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 2000;66: 5259– 5266 [CrossRef]
    [Google Scholar]
  53. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  54. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  55. Jukes TH, Cantor CR. Evolution of protein molecules In HN Munro. editor Mammalian Protein Metabolism New York: Academic Press; 1969; pp 21– 132
    [Google Scholar]
  56. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004;101: 11030– 11035 [CrossRef]
    [Google Scholar]
  57. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 1998;95: 6578– 6583 [CrossRef]
    [Google Scholar]
  58. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 1994;44: 375 [CrossRef]
    [Google Scholar]
  59. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H et al. Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 2008;58: 591– 596 [CrossRef]
    [Google Scholar]
  60. Heyer J, Galchenko VF, Dunfield PF. Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 2002;148: 2831– 2846 [CrossRef]
    [Google Scholar]
  61. Duan Z, Mao S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000bar. Geochim Cosmochim Acta 2006;70: 3369– 3386 [CrossRef]
    [Google Scholar]
  62. Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles 1995;9: 1– 10 [CrossRef]
    [Google Scholar]
  63. Bowman J. Methylococcales In Garrity GM. editor Bergey's Manual of Systematic BacteriologyTwo, Part B New York: Springer; 2005; pp 248– 270
    [Google Scholar]
  64. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 2009;1: 293– 306 [CrossRef]
    [Google Scholar]
  65. Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J et al. Methanobactin and MmoD work in concert to act as the 'copper-switch' in methanotrophs. Environ Microbiol 2013;15: 3077– 86 [CrossRef]
    [Google Scholar]
  66. Stewart LC, Stucker VK, Stott MB, de Ronde CEJ. Marine-influenced microbial communities inhabit terrestrial hot springs on a remote island volcano. Extremophiles 2018;22: 687– 698 [CrossRef]
    [Google Scholar]
  67. Zhang S, Zhou Z, Li Y, Meng F. Deciphering the core fouling-causing microbiota in a membrane bioreactor: low abundance but important roles. Chemosphere 2018;195: 108– 118 [CrossRef]
    [Google Scholar]
  68. Wang M, Chen S, Chen L, Wang D. Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environ Pollut 2019;252: 1609– 1621 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000081
Loading
/content/journal/acmi/10.1099/acmi.0.000081
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error