1887

Abstract

High-throughput sequencing has allowed culture-independent investigation into a wide variety of microbiomes, but sequencing studies still require axenic culture experiments to determine ecological roles, confirm functional predictions and identify useful compounds and pathways. We have developed a new method for culturing and isolating multiple microbial species with overlapping ecological niches from a single environmental sample, using temperature-gradient incubation. This method was more effective than standard serial dilution-to-extinction at isolating methanotrophic bacteria. It also highlighted discrepancies between culture-dependent and -independent techniques; 16S rRNA gene amplicon sequencing of the same sample did not accurately reflect cultivatable strains using this method. We propose that temperature-gradient incubation could be used to separate out and study previously ‘unculturable’ strains, which co-exist in both natural and artificial environments.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000081
2019-12-02
2020-12-02
Loading full text...

Full text loading...

/deliver/fulltext/acmi/2/3/acmi000081.html?itemId=/content/journal/acmi/10.1099/acmi.0.000081&mimeType=html&fmt=ahah

References

  1. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C et al. Best practices for analysing microbiomes. Nat Rev Microbiol 2018; 16:410–422 [CrossRef][PubMed]
    [Google Scholar]
  2. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431–437 [CrossRef][PubMed]
    [Google Scholar]
  3. Dopheide A, Xie D, Buckley TR, Drummond AJ, Newcomb RD. Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods Ecol Evol 2019; 10:120–133 [CrossRef]
    [Google Scholar]
  4. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF. Pcr-Induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 2005; 71:8966–8969 [CrossRef][PubMed]
    [Google Scholar]
  5. Fouhy F, Clooney AG, Stanton C, Claesson MJ, Cotter PD. 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol 2016; 16:123 [CrossRef][PubMed]
    [Google Scholar]
  6. Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol 2016; 2:16242 [CrossRef][PubMed]
    [Google Scholar]
  7. Lennon JT, Muscarella ME, Placella SA, Lehmkuhl BK, How LBK. How, when, and where Relic DNA affects microbial diversity. MBio 2018; 9:e00637-18 [CrossRef][PubMed]
    [Google Scholar]
  8. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 2007; 73:5111–5117 [CrossRef][PubMed]
    [Google Scholar]
  9. Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S et al. Characterization of the gut microbiome using 16S or shotgun Metagenomics. Front Microbiol 2016; 7:459 [CrossRef][PubMed]
    [Google Scholar]
  10. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–D642 [CrossRef][PubMed]
    [Google Scholar]
  11. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. Silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35:7188–7196 [CrossRef][PubMed]
    [Google Scholar]
  12. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 2012; 6:610–618 [CrossRef][PubMed]
    [Google Scholar]
  13. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:9961004 [CrossRef][PubMed]
    [Google Scholar]
  14. Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 2012; 18:1185–1193 [CrossRef][PubMed]
    [Google Scholar]
  15. Smith DP, Peay KG, Depth S, Replication NPCR. Improves ecological inference from next generation DNA sequencing. PLoS One 2014; 9:e90234
    [Google Scholar]
  16. Ni J, Li X, He Z, Xu M. A novel method to determine the minimum number of sequences required for reliable microbial community analysis. J Microbiol Methods 2017; 139:196–201 [CrossRef][PubMed]
    [Google Scholar]
  17. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 2017; 27:626–638 [CrossRef][PubMed]
    [Google Scholar]
  18. Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 2005; 1:e24–12 [CrossRef][PubMed]
    [Google Scholar]
  19. Garza DR, Dutilh BE. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci 2015; 72:4287–4308 [CrossRef][PubMed]
    [Google Scholar]
  20. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 2016; 7:744 [CrossRef][PubMed]
    [Google Scholar]
  21. Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 1985; 39:321–346 [CrossRef][PubMed]
    [Google Scholar]
  22. Lagier J-C, Dubourg G, Million M, Cadoret F, Bilen M et al. Culturing the human microbiota and culturomics. Nat Rev Microbiol 2018; 16:540–550 [CrossRef][PubMed]
    [Google Scholar]
  23. Bittar F, Keita MB, Lagier J-C, Peeters M, Delaporte E et al. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Sci Rep 2014; 4:7174 [CrossRef][PubMed]
    [Google Scholar]
  24. Zehavi T, Probst M, Mizrahi I. Insights into culturomics of the rumen microbiome. Front Microbiol 2018; 9:9 [CrossRef][PubMed]
    [Google Scholar]
  25. Ferrario C, Alessandri G, Mancabelli L, Gering E, Mangifesta M et al. Untangling the cecal microbiota of feral chickens by culturomic and metagenomic analyses. Environ Microbiol 2017; 19:4771–4783 [CrossRef][PubMed]
    [Google Scholar]
  26. Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS et al. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 2016; 9:171 [CrossRef][PubMed]
    [Google Scholar]
  27. Cho G-Y, Han S-I, Whang K-S. Phylogenetic diversity of bacterial communities in a gray solar saltern and isolation of extremely halophilic bacteria using culturomics. The Korean Journal of Microbiology 2017; 53:29–38 [CrossRef]
    [Google Scholar]
  28. Thomson R, Pickup R, Porter J. A novel method for the isolation of motile bacteria using gradient culture systems. J Microbiol Methods 2001; 46:141–147 [CrossRef][PubMed]
    [Google Scholar]
  29. Yamamura H, Hayakawa M, Iimura Y. Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. J Appl Microbiol 2003; 95:677–685 [CrossRef][PubMed]
    [Google Scholar]
  30. Aoi Y, Kaneko Y, Tsuneda S. pH-Gradient ion-exchange microbial cell chromatography as a simple method for microbial separation. J Biosci Bioeng 2017; 123:431–436 [CrossRef][PubMed]
    [Google Scholar]
  31. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ et al. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 2010; 49:277–288 [CrossRef]
    [Google Scholar]
  32. Strong PJ, Xie S, Clarke WP. Methane as a resource: can the methanotrophs add value?. Environ Sci Technol 2015; 49:4001–4018 [CrossRef][PubMed]
    [Google Scholar]
  33. Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP. A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 2016; 215:314–323 [CrossRef][PubMed]
    [Google Scholar]
  34. Bowman J. The Methanotrophs - The families Methylococcaceae and Methylocystaceae . In Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes 5, 3rd ed. Springer; 2006 pp 266–289
    [Google Scholar]
  35. One thousand springs: the microbiology of geothermal hotsprings in New Zealand: GNS science;. University of Waikato 2013
    [Google Scholar]
  36. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2016; 18:1403–1414 [CrossRef][PubMed]
    [Google Scholar]
  37. Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 2015; 75:129–137 [CrossRef]
    [Google Scholar]
  38. Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Institute 2010; 11583827:
    [Google Scholar]
  39. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010; 26:2460–2461 [CrossRef][PubMed]
    [Google Scholar]
  40. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75:7537–7541 [CrossRef][PubMed]
    [Google Scholar]
  41. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010; 7:335–336 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [CrossRef][PubMed]
    [Google Scholar]
  43. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  44. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  45. Corteselli EM, Aitken MD, Singleton DR. Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int J Syst Evol Microbiol 2017; 67:925–931 [CrossRef][PubMed]
    [Google Scholar]
  46. Teramoto M, Yagyu K-I, Nishijima M, K-i Y. Perspicuibacter marinus gen. nov., sp. nov., a semi-transparent bacterium isolated from surface seawater, and description of Arenicellaceae fam. nov. and Arenicellales ord. nov. Int J Syst Evol Microbiol 2015; 65:353–358 [CrossRef][PubMed]
    [Google Scholar]
  47. Whittenbury R, Phillips KC, Wilkinson JF. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 1970; 61:205–218 [CrossRef][PubMed]
    [Google Scholar]
  48. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  49. Costello AM, Lidstrom ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 1999; 65:5066–5074[PubMed]
    [Google Scholar]
  50. Bourne DG, McDonald IR, Murrell JC. Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three Danish soils. Appl Environ Microbiol 2001; 67:3802–3809 [CrossRef][PubMed]
    [Google Scholar]
  51. Holmes AJ, Costello A, Lidstrom ME, Murrell JC. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 1995; 132:203–208 [CrossRef][PubMed]
    [Google Scholar]
  52. Auman AJ, Stolyar S, Costello AM, Lidstrom ME. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 2000; 66:5259–5266 [CrossRef][PubMed]
    [Google Scholar]
  53. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  54. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  55. Jukes TH, Cantor CR. Evolution of protein molecules. In HN Munro. editor Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  56. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004; 101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  57. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 1998; 95:6578–6583 [CrossRef][PubMed]
    [Google Scholar]
  58. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 1994; 44:375 [CrossRef]
    [Google Scholar]
  59. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin D, Fuse H et al. Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium . Int J Syst Evol Microbiol 2008; 58:591–596 [CrossRef][PubMed]
    [Google Scholar]
  60. Heyer J, Galchenko VF, Dunfield PF. Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Microbiology 2002; 148:2831–2846 [CrossRef][PubMed]
    [Google Scholar]
  61. Duan Z, Mao S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000bar. Geochim Cosmochim Acta 2006; 70:3369–3386 [CrossRef]
    [Google Scholar]
  62. Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles 1995; 9:1–10 [CrossRef]
    [Google Scholar]
  63. Bowman J. Methylococcales. In Garrity GM. editor Bergey's Manual of Systematic Bacteriology Two, Part B New York: Springer; 2005 pp 248–270
    [Google Scholar]
  64. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia . Environ Microbiol Rep 2009; 1:293–306 [CrossRef][PubMed]
    [Google Scholar]
  65. Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J et al. Methanobactin and MmoD work in concert to act as the 'copper-switch' in methanotrophs. Environ Microbiol 2013; 15:3077–86 [CrossRef][PubMed]
    [Google Scholar]
  66. Stewart LC, Stucker VK, Stott MB, de Ronde CEJ. Marine-influenced microbial communities inhabit terrestrial hot springs on a remote island volcano. Extremophiles 2018; 22:687–698 [CrossRef][PubMed]
    [Google Scholar]
  67. Zhang S, Zhou Z, Li Y, Meng F. Deciphering the core fouling-causing microbiota in a membrane bioreactor: low abundance but important roles. Chemosphere 2018; 195:108–118 [CrossRef][PubMed]
    [Google Scholar]
  68. Wang M, Chen S, Chen L, Wang D. Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils. Environ Pollut 2019; 252:1609–1621 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000081
Loading
/content/journal/acmi/10.1099/acmi.0.000081
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error