1887

Abstract

Azole drugs such as econazole, are active on and ; however, the identification of their target(s) is still pending. It has been reported that mutations in the non-essential system L5-S5 conferred resistance to econazole in . We herein report that an azole-resistant mutant screen in rendered mutations in A, encoding a non-essential anti-sigma H protein.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000070
2019-10-29
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/acmi/10.1099/acmi.0.000070/acmi000070.html?itemId=/content/journal/acmi/10.1099/acmi.0.000070&mimeType=html&fmt=ahah

References

  1. World Health Organization Global Tuberculosis Report Geneva: World Health organization; 2018
    [Google Scholar]
  2. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 2017
    [Google Scholar]
  3. Furin J, Diacon AH, Andries K. Combating drug-resistant tuberculosis: the unexpected benefits of bedaquiline. Int J Tuberc Lung Dis 2017;21: 4– 5 [CrossRef]
    [Google Scholar]
  4. Da Silva Ferreira ME, Colombo AL, Paulsen I, Ren Q, Wortman J et al. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol 2005;43: 313– 319 [CrossRef]
    [Google Scholar]
  5. McLean KJ, Clift D, Lewis DG, Sabri M, Balding PR et al. The preponderance of P450s in the Mycobacterium tuberculosis genome. Trends Microbiol 2006;14: 220– 228 [CrossRef]
    [Google Scholar]
  6. Ouellet H, Johnston JB, Ortiz de Montellano PR. The Mycobacterium tuberculosis cytochrome P450 system. Arch Biochem Biophys 2010;493: 82– 95 [CrossRef]
    [Google Scholar]
  7. Capyk JK, Kalscheuer R, Stewart GR, Liu J, Kwon H et al. Mycobacterial cytochrome P450 125 (cyp125) catalyzes the terminal hydroxylation of C27 steroids. J Biol Chem 2009;284: 35534– 35542 [CrossRef]
    [Google Scholar]
  8. Ortega Ugalde S, Boot M, Commandeur JNM, Jennings P, Bitter W et al. Function, essentiality, and expression of cytochrome P450 enzymes and their cognate redox partners in Mycobacterium tuberculosis: are they drug targets?. Appl Microbiol Biotechnol 2019
    [Google Scholar]
  9. McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K et al. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology 2002;148: 2937– 2949 [CrossRef]
    [Google Scholar]
  10. Burguiere A, Hitchen PG, Dover LG, Dell A, Besra GS. Altered expression profile of mycobacterial surface glycopeptidolipids following treatment with the antifungal azole inhibitors econazole and clotrimazole. Microbiology 2005;151: 2087– 2095 [CrossRef]
    [Google Scholar]
  11. Ahmad Z, Sharma S, Khuller GK. In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv. FEMS Microbiol Lett 2005;251: 19– 22 [CrossRef]
    [Google Scholar]
  12. Ahmad Z, Sharma S, Khuller GK. Azole antifungals as novel chemotherapeutic agents against murine tuberculosis. FEMS Microbiol Lett 2006;261: 181– 186 [CrossRef]
    [Google Scholar]
  13. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393: 537– 544 [CrossRef]
    [Google Scholar]
  14. Daffé M. The cell envelope of tubercle bacilli. Tuberculosis 2015;95: S155– S158 [CrossRef]
    [Google Scholar]
  15. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio 2017;8: [CrossRef]
    [Google Scholar]
  16. Carroll P, Parish T. Deletion of cyp125 confers increased sensitivity to azoles in Mycobacterium tuberculosis. PLoS One 2015;10: e0133129 [CrossRef]
    [Google Scholar]
  17. Warrilow AGS, Jackson CJ, Parker JE, Marczylo TH, Kelly DE et al. Identification, characterization, and Azole-binding properties of Mycobacterium smegmatis CYP164A2, a homolog of ML2088, the sole cytochrome P450 gene of Mycobacterium leprae. Antimicrob Agents Chemother 2009;53: 1157– 1164 [CrossRef]
    [Google Scholar]
  18. Seward HE, Roujeinikova A, McLean KJ, Munro AW, Leys D. Crystal structure of the Mycobacterium tuberculosis P450 CYP121-fluconazole complex reveals new azole drug-P450 binding mode. J Biol Chem 2006;281: 39437– 39443 [CrossRef]
    [Google Scholar]
  19. McLean KJ, Dunford AJ, Sabri M, Neeli R, Girvan HM et al. CYP121, CYP51 and associated redox systems in Mycobacterium tuberculosis: towards deconvoluting enzymology of P450 systems in a human pathogen. Biochem Soc Trans 2006;34: 1178– 1182 [CrossRef]
    [Google Scholar]
  20. Driscoll MD, McLean KJ, Cheesman MR, Jowitt TA, Howard M et al. Expression and characterization of Mycobacterium tuberculosis CYP144: common themes and lessons learned in the M. tuberculosis P450 enzyme family. Biochim Biophys Acta 1814;2011: 76– 87
    [Google Scholar]
  21. Milano A, Pasca MR, Provvedi R, Lucarelli AP, Manina G et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5–MmpL5 efflux system. Tuberculosis 2009;89: 84– 90 [CrossRef]
    [Google Scholar]
  22. Briffotaux J, Huang W, Wang X, Gicquel B. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis 2017;107: 13– 19 [CrossRef]
    [Google Scholar]
  23. Vilcheze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M et al. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 2000;182: 4059– 4067 [CrossRef]
    [Google Scholar]
  24. Howell Wescott HA, Roberts DM, Allebach CL, Kokoczka R, Parish T. Imidazoles induce reactive oxygen species in Mycobacterium tuberculosis which is not associated with cell death. ACS Omega 2017;2: 41– 51 [CrossRef]
    [Google Scholar]
  25. Andries K, Villellas C, Coeck N, Thys K, Gevers T et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 2014;9: e102135 [CrossRef]
    [Google Scholar]
  26. Ioerger TR, Feng Y, Ganesula K, Chen X, Dobos KM et al. Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. J Bacteriol 2010;192: 3645– 3653 [CrossRef]
    [Google Scholar]
  27. Park ST, Kang C-M, Husson RN. Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2008;105: 13105– 13110 [CrossRef]
    [Google Scholar]
  28. Song T, Dove SL, Lee KH, Husson RN. RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol Microbiol 2003;50: 949– 959 [CrossRef]
    [Google Scholar]
  29. Kaushal D, Schroeder BG, Tyagi S, Yoshimatsu T, Scott C et al. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative factor, SigH. Proc Natl Acad Sci U S A 2002;99: 8330– 8335 [CrossRef]
    [Google Scholar]
  30. Kumar S, Badireddy S, Pal K, Sharma S, Arora C et al. Interaction of Mycobacterium tuberculosis RshA and SigH is mediated by salt bridges. PLoS One 2012;7: e43676 [CrossRef]
    [Google Scholar]
  31. Riccardi G, Milano A, Pasca MR, Nies DH. Genomic analysis of zinc homeostasis in Mycobacterium tuberculosis. FEMS Microbiol Lett 2008;287: 1– 7 [CrossRef]
    [Google Scholar]
  32. HF N, Tan JL, Zin T, Yap SF, Ngeow YF. A mutation in anti-sigma factor MAB_3542c may be responsible for tigecycline resistance in Mycobacterium abscessus. J Med Microbiol 2018;67: 1676– 1681
    [Google Scholar]
  33. Di Capua CB, Belardinelli JM, Buchieri MV, Bortolotti A, Franceschelli JJ et al. Deletion of MSMEG_1350 in Mycobacterium smegmatis causes loss of epoxy-mycolic acids, fitness alteration at low temperature and resistance to a set of mycobacteriophages. Microbiology 2018;164: 1567– 1582 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000070
Loading
/content/journal/acmi/10.1099/acmi.0.000070
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error