1887

Abstract

Human herpes simplex virus (HSV)-1 infection is acquired in childhood and persists throughout a person’s lifetime. Here, we present two cases from India; one showing symptoms of postpartum haemorrhage with disseminated intravascular coagulation, and the second one showing signs of acute encephalitis syndrome. The aetiological agent in both cases was identified as HSV-1 using the PCR method. The next-generation sequencing method retrieved ~97 % of the viral genome from the isolates of the clinical samples. The phylogenetic analysis of the retrieved genomes revealed that they belong to clade II of HSV-1. This study identifies a few sequence variations in the glycoprotein region of HSV-1 during two different clinical manifestations. There are a couple of papers that analyse variations in the glycoprotein region of clinical samples. Further, this study also highlights the importance of considering HSV-1 during differential diagnosis when analysing the nosocomial infection.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000047
2019-08-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/acmi/1/6/acmi000047.html?itemId=/content/journal/acmi/10.1099/acmi.0.000047&mimeType=html&fmt=ahah

References

  1. Laine RF, Albecka A, van de Linde S, Rees EJ, Crump CM et al. Structural analysis of herpes simplex virus by optical super-resolution imaging. Nat Commun 2015;6:5980 [CrossRef]
    [Google Scholar]
  2. Kimberlin DW. Herpes simplex virus infections of the newborn. Semin Perinatol 2007;31:19–25 [CrossRef]
    [Google Scholar]
  3. Lee R, Nair M. Diagnosis and treatment of herpes simplex 1 virus infection in pregnancy. Obstet Med 2017;10:58–60 [CrossRef]
    [Google Scholar]
  4. Simmons A. Clinical manifestations and treatment considerations of herpes simplex virus infection. J Infect Dis 2002;186 Suppl 1:S71–S77 [CrossRef]
    [Google Scholar]
  5. James SH, Sheffield JS, Kimberlin DW. Mother-To-Child transmission of herpes simplex virus. J Pediatric Infect Dis Soc 2014;3:S19–S23 [CrossRef]
    [Google Scholar]
  6. Bondre VP, Sankararaman V, Andhare V, Tupekar M, Sapkal GN. Genetic characterization of human herpesvirus type 1: full-length genome sequence of strain obtained from an encephalitis case from India. Indian J Med Res 2016;144:750–760 [CrossRef]
    [Google Scholar]
  7. Brown JC. High G+C content of herpes simplex virus DNA: proposed role in protection against retrotransposon insertion. Open Biochem J 2007;1:33–42 [CrossRef]
    [Google Scholar]
  8. Oda S, Arii J, Koyanagi N, Kato A, Kawaguchi Y. The interaction between herpes simplex virus 1 tegument proteins UL51 and UL14 and its role in virion morphogenesis. J Virol 2016;90:8754–8767 [CrossRef]
    [Google Scholar]
  9. Reske A, Pollara G, Krummenacher C, Chain BM, Katz DR. Understanding HSV-1 entry glycoproteins. Rev Med Virol 2007;17:205–215 [CrossRef]
    [Google Scholar]
  10. Jaggi U, Wang S, Tormanen K, Matundan H, Ljubimov AV et al. Role of herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) pathogenic CD8+ T cells in exacerbation of eye disease. Front Immunol 2018;9:2895 [CrossRef]
    [Google Scholar]
  11. Sivadon V, Lebon P, Rozenberg F. Variations of HSV-1 glycoprotein B in human herpes simplex encephalitis. J Neurovirol 1998;4:106–114 [CrossRef]
    [Google Scholar]
  12. Izumi KM, Stevens JG. Molecular and biological characterization of a herpes simplex virus type 1 (HSV-1) neuroinvasiveness gene. J Exp Med 1990;172:487–496 [CrossRef]
    [Google Scholar]
  13. Rozenberg F, Lebon P. Analysis of herpes simplex virus type 1 glycoprotein D nucleotide sequence in human herpes simplex encephalitis. J Neurovirol 1996;2:289–295 [CrossRef]
    [Google Scholar]
  14. Arii J, Wang J, Morimoto T, Suenaga T, Akashi H et al. A single-amino-acid substitution in herpes simplex virus 1 envelope glycoprotein B at a site required for binding to the paired immunoglobulin-like type 2 receptor alpha (PILRalpha) abrogates PILRalpha-dependent viral entry and reduces pathogenesis. J Virol 2010;84:10773–10783 [CrossRef]
    [Google Scholar]
  15. Engel JP, Boyer EP, Goodman JL. Two novel single amino acid syncytial mutations in the carboxy terminus of glycoprotein B of herpes simplex virus type 1 confer a unique pathogenic phenotype. Virology 1993;192:112–120 [CrossRef]
    [Google Scholar]
  16. Sampath A, Maduro G, Schillinger JA. Infant deaths due to herpes simplex virus, congenital syphilis, and HIV in New York City. Pediatrics 2016;137:e20152387 [CrossRef]
    [Google Scholar]
  17. Beig FK, Malik A, Rizvi M, Acharya D, Khare S. Etiology and clinico-epidemiological profile of acute viral encephalitis in children of Western Uttar Pradesh, India. Int J Infect Dis 2010;14:e141–e146 [CrossRef]
    [Google Scholar]
  18. Modi A, Atam V, Jain N, Gutch M, Verma R. The etiological diagnosis and outcome in patients of acute febrile encephalopathy: a prospective observational study at tertiary care center. Neurol India 2012;60:168–173 [CrossRef]
    [Google Scholar]
  19. Pfaff F, Groth M, Sauerbrei A, Zell R. Genotyping of herpes simplex virus type 1 by whole-genome sequencing. J Gen Virol 2016;97:2732–2741 [CrossRef]
    [Google Scholar]
  20. Lan K, Luo M-H. Herpesviruses: epidemiology, pathogenesis and interventions. Virol Sin 2017;32:347–348 [CrossRef]
    [Google Scholar]
  21. James SH, Whitley RJ. Treatment of herpes simplex virus infections in pediatric patients: current status and future needs. Clin Pharmacol Ther 2010;88:720–724 [CrossRef]
    [Google Scholar]
  22. Allen UD, Robinson JL. Canadian Paediatric Society, Infectious Diseases and Immunization Committee Prevention and management of neonatal herpes simplex virus infections. Paediatr Child Health 2014;19:201–206 [CrossRef]
    [Google Scholar]
  23. Jouan Y, Grammatico-Guillon L, Guillon A. Nosocomial herpes simplex encephalitis: does it really exist?. J Infect Public Health 2018;11:142 [CrossRef]
    [Google Scholar]
  24. Young EJ, Chafizadeh E, Oliveira VL, Genta RM. Disseminated herpesvirus infection during pregnancy. Clin Infect Dis 1996;22:51–58 [CrossRef]
    [Google Scholar]
  25. Arankalle VA, Lole KS, Deshmukh TM, Chobe LP, Gandhe SS. Evaluation of human (genotype 1) and swine (genotype 4)-ORF2-based ELISAs for anti-HEV IgM and IgG detection in an endemic country and search for type 4 human HEV infections. J Viral Hepat 2007;14:435–445 [CrossRef]
    [Google Scholar]
  26. Liu J, Ochieng C, Wiersma S, Ströher U, Towner JS et al. Development of a taqman array card for acute-febrile-illness outbreak investigation and surveillance of emerging pathogens, including ebola virus. J Clin Microbiol 2016;54:49–58 [CrossRef]
    [Google Scholar]
  27. Mourya DT, Yadav PD, Mehla R, Barde PV, Yergolkar PN et al. Diagnosis of Kyasanur forest disease by nested RT-PCR, real-time RT-PCR and IgM capture ELISA. J Virol Methods 2012;186:49–54 [CrossRef]
    [Google Scholar]
  28. Waggoner JJ, Gresh L, Mohamed-Hadley A, Ballesteros G, Davila MJV et al. Single-Reaction multiplex reverse transcription PCR for detection of Zika, Chikungunya, and dengue viruses. Emerg Infect Dis 2016;22:1295–1297 [CrossRef]
    [Google Scholar]
  29. Bondre VP, Jadi RS, Mishra AC, Yergolkar PN, Arankalle VA. West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 2007;88:875–884 [CrossRef]
    [Google Scholar]
  30. Gurav YK, Tandale BV, Jadi RS, Gunjikar RS, Tikute SS et al. Chandipura virus encephalitis outbreak among children in Nagpur division, Maharashtra, 2007. Indian J Med Res 2010;132:395–399
    [Google Scholar]
  31. Sapkal GN, Wairagkar NS, Ayachit VM, Bondre VP, Gore MM. Detection and isolation of Japanese encephalitis virus from blood clots collected during the acute phase of infection. Am J Trop Med Hyg 2007;77:1139–1145 [CrossRef]
    [Google Scholar]
  32. Weidmann M, Meyer-König U, Hufert FT. Rapid detection of herpes simplex virus and varicella-zoster virus infections by real-time PCR. J Clin Microbiol 2003;41:1565–1568 [CrossRef]
    [Google Scholar]
  33. Yadav P, Sarkale P, Patil D, Shete A, Kokate P et al. Isolation of Tioman virus from Pteropus giganteus bat in north-east region of India. Infect Genet Evol 2016;45:224–229 [CrossRef]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  35. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 2015;1: [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000047
Loading
/content/journal/acmi/10.1099/acmi.0.000047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error