1887

Abstract

The genus Chryseobacterium was formally established in 1994 and contains 112 species with validly published names. Most of these species are yellow or orange coloured, and contain a flexirubin-type pigment. The genomes of 83 of these 112 species have been sequenced in view of their importance in clinical microbiology and potential applications in biotechnology. The National Center for Biotechnology Information taxonomy browser lists 1415 strains as members of the genus Chryseobacterium , of which the genomes of 94 strains have been sequenced. In this study, by comparing the 16S rDNA and the deduced proteome sequences, at least 20 of these strains have been proposed to represent novel species of the genus Chryseobacterium . Furthermore, a yellow-coloured bacterium isolated from dry soil in the USA (and identified as Flavobacterium sp. strain B-14859) has also been reconciled as a novel member of the genus Chryseobacterium based on the analysis of 16S rDNA sequences and the presence of flexirubin. Yet another bacterium (isolated from a water sample collected in the Western Ghats of India and identified as Chryseobacterium sp. strain WG4) was also found to represent a novel species. These proposals need to be validated using polyphasic taxonomic approaches.

Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000019
2019-05-03
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/acmi/1/3/acmi000019.html?itemId=/content/journal/acmi/10.1099/acmi.0.000019&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B. New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  2. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070
    [Google Scholar]
  3. Holmes B, Owen RJ, Steigerwalt AG, Brenner DJ. Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Bacteriol 1984;34:21–25 [CrossRef]
    [Google Scholar]
  4. Kim KK, Kim MK, Lim JH, Park HY, Lee ST. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 2005;55:1287–1293 [CrossRef]
    [Google Scholar]
  5. Bernardet JF, Hugo CJ, Bruun B.Genus X. Chryseobacterium In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 Springer; 2011; pp180–196
    [Google Scholar]
  6. McBride MJ.The Family Flavobacteriaceae In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes (Other major lineages of bacteria and the archaea), 4th ed. Springer; 2014; pp643–676
    [Google Scholar]
  7. Sharma P, Gupta SK, Diene SM, Rolain JM. Whole-genome sequence of Chryseobacterium oranimense, a colistin-resistant bacterium isolated from a cystic fibrosis patient in France. Antimicrob Agents Chemother 2015;59:1696–1706 [CrossRef]
    [Google Scholar]
  8. Wang T, Jiang X, Feng C, Li A, Dong H et al. Whole genome sequencing uncovers a novel IND-16 metallo-β-lactamase from an extensively drug-resistant Chryseobacterium indologenes strain J31. Gut Pathog 2016;8:47 [CrossRef]
    [Google Scholar]
  9. Lo CI, Sankar SA, Mediannikov O, Ehounoud CB, Labas N et al. High-quality genome sequence and description of Chryseobacterium senegalense sp. nov. New Microbes New Infect 2016;10:93–100 [CrossRef]
    [Google Scholar]
  10. Cimmino T, Rolain JM. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France. New Microbes New Infect 2016;12:35–42 [CrossRef]
    [Google Scholar]
  11. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016;7:2003 [CrossRef]
    [Google Scholar]
  12. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015;13:321–331 [CrossRef]
    [Google Scholar]
  13. Viswanathan V, Narjala A, Ravichandran A, Jayaprasad S, Siddaramappa S. Evolutionary genomics of an ancient prophage of the order Sphingomonadales. Genome Biol Evol 2017;9:646–658 [CrossRef]
    [Google Scholar]
  14. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef]
    [Google Scholar]
  15. Kirk KE, Hoffman JA, Smith KA, Strahan BL, Failor KC et al. Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 2013;63:4777–4783 [CrossRef]
    [Google Scholar]
  16. Yi H, Yoon HI, Chun J. Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 2005;55:409–416 [CrossRef]
    [Google Scholar]
  17. Kim KK, Lee KC, Oh HM, Lee JS. Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 2008;58:533–537 [CrossRef]
    [Google Scholar]
  18. Kämpfer P, McInroy JA, Glaeser SP. Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie Van Leeuwenhoek 2014;105:491–500 [CrossRef]
    [Google Scholar]
  19. Campbell S, Harada RM, Li QX. Chryseobacterium arothri sp. nov., isolated from the kidneys of a pufferfish. Int J Syst Evol Microbiol 2008;58:290–293 [CrossRef]
    [Google Scholar]
  20. Kämpfer P, Arun AB, Young CC, Chen WM, Sridhar KR et al. Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 2010;60:1765–1769 [CrossRef]
    [Google Scholar]
  21. Venil CK, Nordin N, Zakaria ZA, Ahmad WA. Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 2014;64:3153–3159 [CrossRef]
    [Google Scholar]
  22. Hantsis-Zacharov E, Senderovich Y, Halpern M. Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 2008;58:1024–1028 [CrossRef]
    [Google Scholar]
  23. Charimba G, Jooste P, Albertyn J, Hugo C. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 2013;63:3243–3249 [CrossRef]
    [Google Scholar]
  24. Kämpfer P, Fallschissel K, Avendaño-Herrera R. Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 2011;61:497–501 [CrossRef]
    [Google Scholar]
  25. Kämpfer P, Poppel MT, Wilharm G, Busse HJ, McInroy JA et al. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 2014;64:1419–1427 [CrossRef]
    [Google Scholar]
  26. Jeong JJ, Lee DW, Park B, Sang MK, Choi IG et al. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. Int J Syst Evol Microbiol 2017;67:610–616 [CrossRef]
    [Google Scholar]
  27. Kämpfer P, Chandel K, Prasad GB, Shouche YS, Veer V. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus. Int J Syst Evol Microbiol 2010;60:2387–2391 [CrossRef]
    [Google Scholar]
  28. Young CC, Kämpfer P, Shen FT, Lai WA, Arun AB. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 2005;55:423–426 [CrossRef]
    [Google Scholar]
  29. Bajerski F, Ganzert L, Mangelsdorf K, Padur L, Lipski A et al. Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. Int J Syst Evol Microbiol 2013;63:2666–2671 [CrossRef]
    [Google Scholar]
  30. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A. Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 2008;58:26–33 [CrossRef]
    [Google Scholar]
  31. Pal M, Swarnkar MK, Dhar H, Chhibber S, Gulati A. Genome assembly of Chryseobacterium sp. strain IHBB 10212 from glacier top-surface soil in the Indian trans-Himalayas with potential for hydrolytic enzymes. Genom Data 2017;13:46–49 [CrossRef]
    [Google Scholar]
  32. Pal M, Kumari M, Kiran S, Salwan R, Mayilraj S et al. Chryseobacterium glaciei sp. nov., isolated from the surface of a glacier in the Indian trans-Himalayas. Int J Syst Evol Microbiol 2018;68:865–870 [CrossRef]
    [Google Scholar]
  33. Loveland-Curtze J, Miteva V, Brenchley J. Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 2010;14:61–69 [CrossRef]
    [Google Scholar]
  34. Hantsis-Zacharov E, Halpern M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 2007;57:2344–2348 [CrossRef]
    [Google Scholar]
  35. Shakéd T, Hantsis-Zacharov E, Halpern M. Epilithonimonas lactis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 2010;60:675–679 [CrossRef]
    [Google Scholar]
  36. Pires C, Carvalho MF, De Marco P, Magan N, Castro PML. Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sediments. Int J Syst Evol Microbiol 2010;60:402–407 [CrossRef]
    [Google Scholar]
  37. Szoboszlay S, Atzél B, Kukolya J, Tóth EM, Márialigeti K et al. Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 2008;58:2748–2754 [CrossRef]
    [Google Scholar]
  38. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIk-2 and IIb. Int J Syst Evol Microbiol 1983;33:580–598 [CrossRef]
    [Google Scholar]
  39. Weon HY, Kim BY, Yoo SH, Kwon SW, Stackebrandt E et al. Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 2008;58:470–473 [CrossRef]
    [Google Scholar]
  40. Hugo CJ, Segers P, Hoste B, Vancanneyt M, Kersters K. Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 2003;53:771–777 [CrossRef]
    [Google Scholar]
  41. Kim MK, Im WT, Shin YK, Lim JH, Kim SH et al. Kaistella koreensis gen. nov., sp. nov., a novel member of the Chryseobacterium-Bergeyella-Riemerella branch. Int J Syst Evol Microbiol 2004;54:2319–2324 [CrossRef]
    [Google Scholar]
  42. Kämpfer P, Vaneechoutte M, Lodders N, De Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009;59:2421–2428 [CrossRef]
    [Google Scholar]
  43. Sang MK, Kim HS, Myung IS, Ryu CM, Kim BS et al. Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 2013;63:2835–2840 [CrossRef]
    [Google Scholar]
  44. Holmes B, Steigerwalt AG, Nicholson AC. DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 2013;63:4639–4662 [CrossRef]
    [Google Scholar]
  45. Kämpfer P, Trček J, Skok B, Šorgo A, Glaeser SP. Chryseobacterium limigenitum sp. nov., isolated from dehydrated sludge. Antonie van Leeuwenhoek 2015;107:1633–1638 [CrossRef]
    [Google Scholar]
  46. Behrendt U, Ulrich A, Spröer C, Schumann P. Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 2007;57:1881–1885 [CrossRef]
    [Google Scholar]
  47. Tetz G, Tetz V. Draft genome sequence of Chryseobacterium mucoviscidosis sp. nov. Strain VT16-26, isolated from the bronchoalveolar lavage fluid of a patient with cystic fibrosis. Genome Announc 2018;6:e01473–17 [CrossRef]
    [Google Scholar]
  48. Montero-Calasanz M, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini. Syst Appl Microbiol 2014;37:342–350
    [Google Scholar]
  49. Zamora L, Fernández-Garayzábal JF, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium oncorhynchi sp. nov., isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 2012;35:24–29 [CrossRef]
    [Google Scholar]
  50. Hantsis-Zacharov E, Shakéd T, Senderovich Y, Halpern M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. Int J Syst Evol Microbiol 2008;58:2635–2639 [CrossRef]
    [Google Scholar]
  51. Strahan BL, Failor KC, Batties AM, Hayes PS, Cicconi KM et al. Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2011;61:2162–2166 [CrossRef]
    [Google Scholar]
  52. Ilardi P, Fernández J, Avendaño-Herrera R. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 2009;59:3001–3005 [CrossRef]
    [Google Scholar]
  53. Chen XY, Zhao R, Chen ZL, Liu L, Li XD et al. Chryseobacterium polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Chryseobacterium. Antonie Van Leeuwenhoek 2015;107:403–410 [CrossRef]
    [Google Scholar]
  54. Mudarris M, Austin B, Segers P, Vancanneyt M, Hoste B et al. Flavobacterium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.). Int J Syst Bacteriol 1994;44:447–453 [CrossRef]
    [Google Scholar]
  55. Shimomura K, Kaji S, Hiraishi A. Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 2005;55:1903–1906 [CrossRef]
    [Google Scholar]
  56. Park MS, Jung SR, Lee KH, Lee MS, Do JO et al. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 2006;56:433–438 [CrossRef]
    [Google Scholar]
  57. Benmalek Y, Cayol JL, Bouanane NA, Hacene H, Fauque G et al. Chryseobacterium solincola sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010;60:1876–1880 [CrossRef]
    [Google Scholar]
  58. Shen FT, Kämpfer P, Young CC, Lai WA, Arun AB. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 2005;55:1301–1304 [CrossRef]
    [Google Scholar]
  59. Wu YF, Wu QL, Liu SJ. Chryseobacteriumtaihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 2013;63:913–919 [CrossRef]
    [Google Scholar]
  60. Zhao R, Chen XY, Li XD, Chen ZL, Li YH. Chryseobacterium takakiae sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 2015;65:71–76 [CrossRef]
    [Google Scholar]
  61. Peng F, Liu M, Zhang L, Dai J, Luo X et al. Planobacterium taklimakanense gen. nov., sp. nov., a member of the family Flavobacteriaceae that exhibits swimming motility, isolated from desert soil. Int J Syst Evol Microbiol 2009;59:1672–1678 [CrossRef]
    [Google Scholar]
  62. Yassin AF, Hupfer H, Siering C, Busse HJ. Chryseobacterium treverense sp. nov., isolated from a human clinical source. Int J Syst Evol Microbiol 2010;60:1993–1998 [CrossRef]
    [Google Scholar]
  63. Zamora L, Vela AI, Palacios MA, Sánchez-Porro C, Svensson-Stadler LA et al. Chryseobacterium viscerum sp. nov., isolated from diseased fish. Int J Syst Evol Microbiol 2012;62:2934–2940 [CrossRef]
    [Google Scholar]
  64. Weon HY, Kim BY, Yoo SH, Kwon SW, Cho YH et al. Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 2006;56:1501–1504 [CrossRef]
    [Google Scholar]
  65. Park GS, Hong SJ, Lee CH, Khan AR, Ullah I et al. Draft genome sequence of Chryseobacterium sp. strain P1-3, a keratinolytic bacterium isolated from poultry waste. Genome Announc 2014;2:e01237–14 [CrossRef]
    [Google Scholar]
  66. Bortniak VL, Pelletier DA, Newman JD. Chryseobacterium populi sp. nov., isolated from Populus deltoides endosphere. Int J Syst Evol Microbiol 2019;69:356–362 [CrossRef]
    [Google Scholar]
  67. Kumar R, Singh D, Swarnkar MK, Singh AK, Kumar S. Genome assembly of Chryseobacterium polytrichastri ERMR1:04, a psychrotolerant bacterium with cold active proteases, isolated from East Rathong Glacier in India. Genome Announc 2015;3:e01305–01315 [CrossRef]
    [Google Scholar]
  68. Ayala M, Segovia C, Rojas R, Miranda C, Santander J. Draft genome sequence of Epilithonimonas sp. FP211-J200, isolated from an outbreak episode on a rainbow trout (Oncorhynchus mykiss) farm. Genome Announc 2017;5:e00819–17 [CrossRef]
    [Google Scholar]
  69. Couger MB, Hurlbut A, Murphy CL, Budd C, French DP et al. Draft genome sequence of the environmental isolate Chryseobacterium sp. Hurlbut01. Genome Announc 2015;3:e01071–15 [CrossRef]
    [Google Scholar]
  70. Sang MK, Chun SC, Kim KD. Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol Cont 2008;46:424–433 [CrossRef]
    [Google Scholar]
  71. Jeong JJ, Sang MK, Pathiraja D, Park B, Choi IG et al. Draft genome sequence of phosphate-solubilizing Chryseobacterium sp. strain ISE14, a biocontrol and plant growth-promoting rhizobacterium isolated from cucumber. Genome Announc 2018;6:e00612–00618 [CrossRef]
    [Google Scholar]
  72. Jeong JJ, Sang MK, Lee DW, Choi IG, Kim KD. Chryseobacterium phosphatilyticum sp. nov., a phosphate-solubilizing endophyte isolated from cucumber (Cucumis sativus L.) root. Int J Syst Evol Microbiol 2019;69:610–615 [CrossRef]
    [Google Scholar]
  73. Morohoshi T, Wang WZ, Someya N, Ikeda T. Complete genome sequence of Chryseobacterium sp. strain StRB126, an N-acylhomoserine lactone-degrading bacterium isolated from potato root. Genome Announc 2014;2:e00952–14 [CrossRef]
    [Google Scholar]
  74. Lee SA, Kim SY, Sang MK, Song J, Weon HY. Complete genome sequence of Chryseobacterium sp. T16E-39, a plant growth-promoting and biocontrol bacterium, isolated from tomato (Solanum lycopersicum L.) root. Korean J Microbiol 2017;53:351–353
    [Google Scholar]
  75. Blair PM, Land ML, Piatek MJ, Jacobson DA, Lu TS et al. Exploration of the biosynthetic potential of the Populus microbiome. mSystems 2018;3:e00045–18 [CrossRef]
    [Google Scholar]
  76. Hou CT. Production of 10-ketostearic acid from oleic acid by Flavobacterium sp. strain DS5 (NRRL B-14859). Appl Environ Microbiol 1994;60:3760–3763
    [Google Scholar]
  77. Heo SH, Hou CT, Kim BS. Production of oxygenated fatty acids from vegetable oils by Flavobacterium sp. strain DS5. New Biotechnol 2009;26:105–108 [CrossRef]
    [Google Scholar]
  78. Hou CT. Conversion of linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid by Flavobacterium sp. (NRRL B-14859). J Am Oil Chem Soc 1994;71:975–978 [CrossRef]
    [Google Scholar]
  79. Hou CT. Is strain DS5 hydratase a C-10 positional specific enzyme? Identification of bioconversion products from α- and γ-linolenic acids by Flavobacterium sp. DS5. J Ind Microbiol 1995;14:31–34 [CrossRef]
    [Google Scholar]
  80. Kumar PA, Srinivas TN, Prasad AR, Shivaji S. Identification of fruity aroma-producing compounds from Chryseobacterium sp. isolated from the Western Ghats, India. Curr Microbiol 2011;63:193–197 [CrossRef]
    [Google Scholar]
  81. Reichenbach H, Kleinig H, Achenbach H. The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol 1974;134–144
    [Google Scholar]
  82. Venil CK, Zakaria ZA, Usha R, Ahmad WA. Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal Agric Biotechnol 2014;3:103–107 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000019
Loading
/content/journal/acmi/10.1099/acmi.0.000019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error