1887

Abstract

The species complex (KpSC) is a major source of nosocomial infections globally with high rates of resistance to antimicrobials. Consequently, there is growing interest in understanding virulence factors and their association with cellular metabolic processes for developing novel anti-KpSC therapeutics. Phenotypic assays have revealed metabolic diversity within the KpSC, but metabolism research has been neglected due to experiments being difficult and cost-intensive. Genome-scale metabolic models (GSMMs) represent a rapid and scalable approach for exploring metabolic diversity, which compile genomic and biochemical data to reconstruct the metabolic network of an organism. Here we use a diverse collection of 507 KpSC isolates, including representatives of globally distributed clinically relevant lineages, to construct the most comprehensive KpSC pan-metabolic model to date, KpSC pan v2. Candidate metabolic reactions were identified using gene orthology to known metabolic genes, prior to manual curation via extensive literature and database searches. The final model comprised a total of 3550 reactions, 2403 genes and can simulate growth on 360 unique substrates. We used KpSC pan v2 as a reference to derive strain-specific GSMMs for all 507 KpSC isolates, and compared these to GSMMs generated using a prior KpSC pan-reference (KpSC pan v1) and two single-strain references. We show that KpSC pan v2 includes a greater proportion of accessory reactions (8.8 %) than KpSC pan v1 (2.5 %). GSMMs derived from KpSC pan v2 also generate more accurate growth predictions, with high median accuracies of 95.4 % (aerobic, =37 isolates) and 78.8 % (anaerobic, =36 isolates) for 124 matched carbon substrates. KpSC pan v2 is freely available at https://github.com/kelwyres/KpSC-pan-metabolic-model, representing a valuable resource for the scientific community, both as a source of curated metabolic information and as a reference to derive accurate strain-specific GSMMs. The latter can be used to investigate the relationship between KpSC metabolism and traits of interest, such as reservoirs, epidemiology, drug resistance or virulence, and ultimately to inform novel KpSC control strategies.

Funding
This study was supported by the:
  • National Health and Medical Research Council (Award APP1176192)
    • Principle Award Recipient: KellyL Wyres
  • Australian Research Council (Award DP200103364)
    • Principle Award Recipient: KellyL Wyres
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001206
2024-02-20
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/2/mgen001206.html?itemId=/content/journal/mgen/10.1099/mgen.0.001206&mimeType=html&fmt=ahah

References

  1. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399:629–655 [View Article]
    [Google Scholar]
  2. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327 [View Article] [PubMed]
    [Google Scholar]
  3. Jenior ML, Dickenson ME, Papin JA. Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae. NPJ Syst Biol Appl 2022; 8:41 [View Article] [PubMed]
    [Google Scholar]
  4. Hudson AW, Barnes AJ, Bray AS, Ornelles DA, Zafar MA. Klebsiella pneumoniae L-fucose metabolism promotes gastrointestinal colonization and modulates its virulence determinants. Infect Immun 2022; 90:e0020622 [View Article] [PubMed]
    [Google Scholar]
  5. Vornhagen J, Sun Y, Breen P, Forsyth V, Zhao L et al. The Klebsiella pneumoniae citrate synthase gene, gltA, influences site specific fitness during infection. PLoS Pathog 2019; 15:e1008010 [View Article] [PubMed]
    [Google Scholar]
  6. Martin RM, Cao J, Wu W, Zhao L, Manthei DM et al. Identification of pathogenicity-associated loci in Klebsiella pneumoniae from hospitalized patients. mSystems 2018; 3:e00015-18 [View Article] [PubMed]
    [Google Scholar]
  7. Blin C, Passet V, Touchon M, Rocha EPC, Brisse S. Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae. Environ Microbiol 2017; 19:1881–1898 [View Article] [PubMed]
    [Google Scholar]
  8. Hawkey J, Vezina B, Monk JM, Judd LM, Harshegyi T et al. A curated collection of Klebsiella metabolic models reveals variable substrate usage and gene essentiality. Genome Res 2022; 32:1004–1014 [View Article] [PubMed]
    [Google Scholar]
  9. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol 2020; 18:344–359 [View Article] [PubMed]
    [Google Scholar]
  10. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–E3581 [View Article] [PubMed]
    [Google Scholar]
  11. Ramos PIP, Fernández Do Porto D, Lanzarotti E, Sosa EJ, Burguener G et al. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci Rep 2018; 8:10755 [View Article] [PubMed]
    [Google Scholar]
  12. Chen X-H, Liu S-R, Peng B, Li D, Cheng Z-X et al. Exogenous l-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front Immunol 2017; 8:207 [View Article] [PubMed]
    [Google Scholar]
  13. Thiele I, Palsson . A protocol for generating A high-quality genome-scale metabolic reconstruction. Nat Protoc 2010; 5:93–121 [View Article] [PubMed]
    [Google Scholar]
  14. O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell 2015; 161:971–987 [View Article] [PubMed]
    [Google Scholar]
  15. Norsigian CJ, Fang X, Seif Y, Monk JM, Palsson BO. A workflow for generating multi-strain genome-scale metabolic models of prokaryotes. Nat Protoc 2020; 15:1–14 [View Article] [PubMed]
    [Google Scholar]
  16. Vezina B, Watts SC, Hawkey J, Cooper HB, Judd LM et al. Bactabolize is a tool for high-throughput generation of bacterial strain-specific metabolic models. eLife 2023; 12:RP87406 [View Article] [PubMed]
    [Google Scholar]
  17. Liao Y-C, Huang T-W, Chen F-C, Charusanti P, Hong JSJ et al. An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J Bacteriol 2011; 193:1710–1717 [View Article] [PubMed]
    [Google Scholar]
  18. Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun 2022; 13:3017 [View Article] [PubMed]
    [Google Scholar]
  19. Norsigian CJ, Attia H, Szubin R, Yassin AS, Palsson et al. Comparative genome-scale metabolic modeling of metallo-beta-lactamase-producing multidrug-resistant Klebsiella pneumoniae clinical isolates. Front Cell Infect Microbiol 2019; 9:161 [View Article] [PubMed]
    [Google Scholar]
  20. Henry CS, Rotman E, Lathem WW, Tyo KEJ, Hauser AR et al. Generation and validation of the iKp1289 metabolic model for Klebsiella pneumoniae KPPR1. J Infect Dis 2017; 215:S37–S43 [View Article] [PubMed]
    [Google Scholar]
  21. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  22. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  23. Liu P, Li P, Jiang X, Bi D, Xie Y et al. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J Bacteriol 2012; 194:1841–1842 [View Article] [PubMed]
    [Google Scholar]
  24. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  25. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  26. Lam MMC, Wick RR, Judd LM, Holt KE, Wyres KL. Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microb Genom 2022; 8:000800 [View Article] [PubMed]
    [Google Scholar]
  27. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol 2017; 35:904–908 [View Article] [PubMed]
    [Google Scholar]
  28. Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM et al. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Syst 2016; 3:238–251 [View Article] [PubMed]
    [Google Scholar]
  29. Archer CT, Kim JF, Jeong H, Park JH, Vickers CE et al. The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 2011; 12:9 [View Article] [PubMed]
    [Google Scholar]
  30. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci U S A 2013; 110:20338–20343 [View Article] [PubMed]
    [Google Scholar]
  31. Charusanti P, Chauhan S, McAteer K, Lerman JA, Hyduke DR et al. An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92. BMC Syst Biol 2011; 5:163 [View Article] [PubMed]
    [Google Scholar]
  32. Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK et al. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol 2011; 5:8 [View Article] [PubMed]
    [Google Scholar]
  33. Raghunathan A, Reed J, Shin S, Palsson B, Daefler S. Constraint-based analysis of metabolic capacity of Salmonella Typhimurium during host-pathogen interaction. BMC Syst Biol 2009; 3:38 [View Article] [PubMed]
    [Google Scholar]
  34. King ZA, Lu J, Dräger A, Miller P, Federowicz S et al. BiGG Models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res 2016; 44:D515–D522 [View Article] [PubMed]
    [Google Scholar]
  35. Malik-Sheriff RS, Glont M, Nguyen TVN, Tiwari K, Roberts MG et al. BioModels-15 years of sharing computational models in life science. Nucleic Acids Res 2020; 48:D407–D415 [View Article] [PubMed]
    [Google Scholar]
  36. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  37. Kitts PA, Church DM, Thibaud-Nissen F, Choi J, Hem V et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res 2016; 44:D73–D80 [View Article] [PubMed]
    [Google Scholar]
  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  39. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article] [PubMed]
    [Google Scholar]
  40. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  41. Seaver SMD, Liu F, Zhang Q, Jeffryes J, Faria JP et al. The ModelSEED biochemistry database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res 2021; 49:D575–D588 [View Article] [PubMed]
    [Google Scholar]
  42. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  43. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol 2013; 7:74 [View Article] [PubMed]
    [Google Scholar]
  44. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:e000102 [View Article] [PubMed]
    [Google Scholar]
  45. Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res 2018; 46:7542–7553 [View Article] [PubMed]
    [Google Scholar]
  46. Hawkey J, Wyres KL, Judd LM, Harshegyi T, Blakeway L et al. ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting. Genome Med 2022; 14:97 [View Article] [PubMed]
    [Google Scholar]
  47. Becker LC, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG et al. Final report of the safety assessment of allantoin and its related complexes. Int J Toxicol 2010; 29:84S–97S [View Article] [PubMed]
    [Google Scholar]
  48. Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K et al. Structural and functional characterization of the LPS transporter LptDE from gram-negative pathogens. Structure 2016; 24:965–976 [View Article] [PubMed]
    [Google Scholar]
  49. Shu H-Y, Fung C-P, Liu Y-M, Wu K-M, Chen Y-T et al. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology 2009; 155:4170–4183 [View Article] [PubMed]
    [Google Scholar]
  50. Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M et al. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol 2020; 38:272–276 [View Article] [PubMed]
    [Google Scholar]
  51. Doménech-Sánchez A, Martínez-Martínez L, Hernández-Allés S, del Carmen Conejo M, Pascual A et al. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother 2003; 47:3332–3335 [View Article] [PubMed]
    [Google Scholar]
  52. Acosta-Gutiérrez S, Ferrara L, Pathania M, Masi M, Wang J et al. Getting drugs into gram-negative bacteria: rational rules for permeation through general porins. ACS Infect Dis 2018; 4:1487–1498 [View Article] [PubMed]
    [Google Scholar]
  53. Albertí S, Rodríquez-Quiñones F, Schirmer T, Rummel G, Tomás JM et al. A porin from Klebsiella pneumoniae: sequence homology, three-dimensional model, and complement binding. Infect Immun 1995; 63:903–910 [View Article] [PubMed]
    [Google Scholar]
  54. Wong JLC, Romano M, Kerry LE, Kwong H-S, Low W-W et al. OmpK36-mediated carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat Commun 2019; 10:3957 [View Article] [PubMed]
    [Google Scholar]
  55. Doménech-Sánchez A, Hernández-Allés S, Martínez-Martínez L, Benedí VJ, Albertí S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol 1999; 181:2726–2732 [View Article] [PubMed]
    [Google Scholar]
  56. Rocker A, Lacey JA, Belousoff MJ, Wilksch JJ, Strugnell RA et al. Global trends in proteome remodeling of the outer membrane modulate antimicrobial permeability in Klebsiella pneumoniae. mBio 2020; 11:e00603-20 [View Article] [PubMed]
    [Google Scholar]
  57. Hu G, Chen X, Chu W, Ma Z, Miao Y et al. Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae. Vet Res 2022; 53:5 [View Article] [PubMed]
    [Google Scholar]
  58. Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R et al. Crystal structures explain functional properties of two E. coli porins. Nature 1992; 358:727–733 [View Article] [PubMed]
    [Google Scholar]
  59. Vanhooren PT, Baets S, Bruggeman G, Vandamme EJ. Klebsiella. In Robinson RK. ed Encyclopedia of Food Microbiology Oxford: Elsevier; 1999 pp 1107–1115
    [Google Scholar]
  60. Cabelli VJ. Lactose utilization in Klebsiella pneumoniae: the slow utilization of lactose by resting cells of lactose fermenting strains. J Bacteriol 1955; 70:15–22 [View Article] [PubMed]
    [Google Scholar]
  61. Kanjee U, Gutsche I, Ramachandran S, Houry WA. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. Biochemistry 2011; 50:9388–9398 [View Article] [PubMed]
    [Google Scholar]
  62. Hammes W, Schleifer KH, Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan. J Bacteriol 1973; 116:1029–1053 [View Article] [PubMed]
    [Google Scholar]
  63. Liu Y, Zhu S, Wei L, Feng Y, Cai L et al. Arm race among closely-related carbapenem-resistant Klebsiella pneumoniae clones. ISME Commun 2022; 2:76 [View Article] [PubMed]
    [Google Scholar]
  64. Hansen DS, Aucken HM, Abiola T, Podschun R. Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 2004; 42:3665–3669 [View Article] [PubMed]
    [Google Scholar]
  65. Edwards PR, Ewing WH. Identification of enterobacteriaceae. Identification of Enterobacteriaceae; 1962 https://www.cabdirect.org/cabdirect/abstract/19632702221
  66. Christensen M, Borza T, Dandanell G, Gilles A-M, Barzu O et al. Regulation of expression of the 2-deoxy-D-ribose utilization regulon, deoQKPX, from Salmonella enterica serovar typhimurium. J Bacteriol 2003; 185:6042–6050 [View Article] [PubMed]
    [Google Scholar]
  67. Kim AD, Baker AS, Dunaway-Mariano D, Metcalf WW, Wanner BL et al. The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway. J Bacteriol 2002; 184:4134–4140 [View Article] [PubMed]
    [Google Scholar]
  68. Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T et al. A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 2005; 280:4602–4608 [View Article] [PubMed]
    [Google Scholar]
  69. Seif Y, Kavvas E, Lachance J-C, Yurkovich JT, Nuccio S-P et al. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat Commun 2018; 9:3771 [View Article] [PubMed]
    [Google Scholar]
  70. Seif Y, Monk JM, Machado H, Kavvas E, Palsson BO. Systems biology and pangenome of Salmonella O-antigens. mBio 2019; 10: [View Article]
    [Google Scholar]
  71. Blázquez B, San León D, Rojas A, Tortajada M, Nogales J. New insights on metabolic features of Bacillus subtilis based on multistrain genome-scale metabolic modeling. Int J Mol Sci 2023; 24:7091 [View Article] [PubMed]
    [Google Scholar]
  72. Ardalani O, Phaneuf P, Mohite OS, Nielsen LK, Palsson BO. Pangenome reconstruction of Lactobacillaceae metabolism predicts species-specific metabolic traits. Syst Biol 2023 [View Article]
    [Google Scholar]
  73. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis 2017; 65:208–215 [View Article] [PubMed]
    [Google Scholar]
  74. Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL et al. Antimicrobial-resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin Infect Dis 2018; 67:161–170 [View Article] [PubMed]
    [Google Scholar]
  75. Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A et al. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 2013; 9:e1003301 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001206
Loading
/content/journal/mgen/10.1099/mgen.0.001206
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error