1887

Abstract

Understanding the link between the human gut virome and diseases has garnered significant interest in the research community. Extracting virus-related information from metagenomic sequencing data is crucial for unravelling virus composition, host interactions, and disease associations. However, current metagenomic analysis workflows for viral genomes vary in effectiveness, posing challenges for researchers seeking the most up-to-date tools. To address this, we present ViromeFlowX, a user-friendly Nextflow workflow that automates viral genome assembly, identification, classification, and annotation. This streamlined workflow integrates cutting-edge tools for processing raw sequencing data for taxonomic annotation and functional analysis. Application to a dataset of 200 metagenomic samples yielded high-quality viral genomes. ViromeFlowX enables efficient mining of viral genomic data, offering a valuable resource to investigate the gut virome’s role in virus-host interactions and virus-related diseases.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001202
2024-02-21
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/2/mgen001202.html?itemId=/content/journal/mgen/10.1099/mgen.0.001202&mimeType=html&fmt=ahah

References

  1. Lou YC, Chen L, Borges AL, West-Roberts J, Firek BA et al. Infant gut DNA bacteriophage strain persistence during the first 3 years of life. Cell Host Microbe 2024; 32:35–47 [View Article] [PubMed]
    [Google Scholar]
  2. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021; 9:37 [View Article] [PubMed]
    [Google Scholar]
  3. Cao Z, Sugimura N, Burgermeister E, Ebert MP, Zuo T et al. The gut virome: A new microbiome component in health and disease. EBioMedicine 2022; 81:104113 [View Article] [PubMed]
    [Google Scholar]
  4. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 2014; 5:4498 [View Article] [PubMed]
    [Google Scholar]
  5. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD et al. Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A 2013; 110:12450–12455 [View Article] [PubMed]
    [Google Scholar]
  6. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19:55–71 [View Article] [PubMed]
    [Google Scholar]
  7. Qv L, Mao S, Li Y, Zhang J, Li L. Roles of gut bacteriophages in the pathogenesis and treatment of inflammatory bowel disease. Front Cell Infect Microbiol 2021; 11:755650 [View Article] [PubMed]
    [Google Scholar]
  8. Zhang Y, Wang R. The human gut phageome: composition, development, and alterations in disease. Front Microbiol 2023; 14:doi [View Article]
    [Google Scholar]
  9. Liang G, Gao H, Bushman FD. The pediatric virome in health and disease. Cell Host Microbe 2022; 30:639–649 [View Article] [PubMed]
    [Google Scholar]
  10. Lam S, Bai X, Shkoporov AN, Park H, Wu X et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol 2022; 7:472–484 [View Article] [PubMed]
    [Google Scholar]
  11. Hsu CL, Duan Y, Fouts DE, Schnabl B. Intestinal virome and therapeutic potential of bacteriophages in liver disease. J Hepatol 2021; 75:1465–1475 [View Article] [PubMed]
    [Google Scholar]
  12. de Jonge PA, Wortelboer K, Scheithauer TPM, van den Born B-JH, Zwinderman AH et al. Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nat Commun 2022; 13:3594 [View Article] [PubMed]
    [Google Scholar]
  13. Bikel S, López-Leal G, Cornejo-Granados F, Gallardo-Becerra L, García-López R et al. Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome. iScience 2021; 24:102900 [View Article] [PubMed]
    [Google Scholar]
  14. Kaelin EA, Rodriguez C, Hall-Moore C, Hoffmann JA, Linneman LA et al. Longitudinal gut virome analysis identifies specific viral signatures that precede necrotizing enterocolitis onset in preterm infants. Nat Microbiol 2022; 7:653–662 [View Article] [PubMed]
    [Google Scholar]
  15. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160:447–460 [View Article] [PubMed]
    [Google Scholar]
  16. Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 2019; 26:764–778 [View Article] [PubMed]
    [Google Scholar]
  17. Zuo T, Kamm MA, Colombel JF, Ng SC. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2018; 15:440–452 [View Article] [PubMed]
    [Google Scholar]
  18. Iliev ID, Cadwell K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology 2021; 160:1050–1066 [View Article] [PubMed]
    [Google Scholar]
  19. Yang K, Niu J, Zuo T, Sun Y, Xu Z et al. Alterations in the gut virome in obesity and type 2 diabetes mellitus. Gastroenterology 2021; 161:1257–1269 [View Article] [PubMed]
    [Google Scholar]
  20. Fan G, Cao F, Kuang T, Yi H, Zhao C et al. Alterations in the gut virome are associated with type 2 diabetes and diabetic nephropathy. Gut Microbes 2023; 15:2226925 [View Article] [PubMed]
    [Google Scholar]
  21. Chen F, Li S, Guo R, Song F, Zhang Y et al. Meta-analysis of fecal viromes demonstrates high diagnostic potential of the gut viral signatures for colorectal cancer and adenoma risk assessment. J Adv Res 2023; 49:103–114 [View Article] [PubMed]
    [Google Scholar]
  22. Johansen J, Atarashi K, Arai Y, Hirose N, Sørensen SJ et al. Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan. Nat Microbiol 2023; 8:1064–1078 [View Article] [PubMed]
    [Google Scholar]
  23. Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737–749 [View Article] [PubMed]
    [Google Scholar]
  24. Zhou Z, Martin C, Kosmopoulos JC, Anantharaman K. ViWrap: a modular pipeline to identify, bin, classify, and predict viral-host relationships for viruses from metagenomes. Imeta 2023; 2:e118 [View Article] [PubMed]
    [Google Scholar]
  25. Ajami NJ, Wong MC, Ross MC, Lloyd RE, Petrosino JF. Maximal viral information recovery from sequence data using VirMAP. Nat Commun 2018; 9:3205 [View Article] [PubMed]
    [Google Scholar]
  26. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E et al. Nextflow enables reproducible computational workflows. Nat Biotechnol 2017; 35:316–319 [View Article] [PubMed]
    [Google Scholar]
  27. Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 2017; 5:69 [View Article] [PubMed]
    [Google Scholar]
  28. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  29. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  31. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  32. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021; 39:578–585 [View Article] [PubMed]
    [Google Scholar]
  33. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  34. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  35. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  36. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 2015; 31:926–932 [View Article] [PubMed]
    [Google Scholar]
  37. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using diamond. Nat Methods 2021; 18:366–368 [View Article] [PubMed]
    [Google Scholar]
  38. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  39. Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ et al. The Gene Ontology knowledgebase in 2023. Genetics 2023; 224: [View Article]
    [Google Scholar]
  40. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  41. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  42. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–85 [View Article] [PubMed]
    [Google Scholar]
  43. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009; 37:D233–8 [View Article] [PubMed]
    [Google Scholar]
  44. Fujimoto K, Kimura Y, Shimohigoshi M, Satoh T, Sato S et al. Metagenome data on intestinal phage-bacteria associations aids the development of phage therapy against pathobionts. Cell Host Microbe 2020; 28:380–389 [View Article] [PubMed]
    [Google Scholar]
  45. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  46. Guerin E, Shkoporov A, Stockdale SR, Clooney AG, Ryan FJ et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe 2018; 24:653–664 [View Article] [PubMed]
    [Google Scholar]
  47. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  48. Shen W, Ren H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J Genet Genomics 2021; 48:844–850 [View Article] [PubMed]
    [Google Scholar]
  49. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience 2012; 1:7 [View Article] [PubMed]
    [Google Scholar]
  50. Yeoh YK, Chen Z, Wong MCS, Hui M, Yu J et al. Southern Chinese populations harbour non-nucleatum Fusobacteria possessing homologues of the colorectal cancer-associated FadA virulence factor. Gut 2020; 69:1998–2007 [View Article] [PubMed]
    [Google Scholar]
  51. Johansen J, Plichta DR, Nissen JN, Jespersen ML, Shah SA et al. Genome binning of viral entities from bulk metagenomics data. Nat Commun 2022; 13:965 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001202
Loading
/content/journal/mgen/10.1099/mgen.0.001202
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error